Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{25+2\sqrt{6}}{\left(25-2\sqrt{6}\right)\left(25+2\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{25-2\sqrt{6}} by multiplying numerator and denominator by 25+2\sqrt{6}.
\frac{25+2\sqrt{6}}{25^{2}-\left(-2\sqrt{6}\right)^{2}}
Consider \left(25-2\sqrt{6}\right)\left(25+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{25+2\sqrt{6}}{625-\left(-2\sqrt{6}\right)^{2}}
Calculate 25 to the power of 2 and get 625.
\frac{25+2\sqrt{6}}{625-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-2\sqrt{6}\right)^{2}.
\frac{25+2\sqrt{6}}{625-4\left(\sqrt{6}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{25+2\sqrt{6}}{625-4\times 6}
The square of \sqrt{6} is 6.
\frac{25+2\sqrt{6}}{625-24}
Multiply 4 and 6 to get 24.
\frac{25+2\sqrt{6}}{601}
Subtract 24 from 625 to get 601.