Solve for x
x=\frac{1}{59}\approx 0.016949153
Graph
Share
Copied to clipboard
\frac{1}{24}\times 7x+\frac{1}{24}\left(-1\right)=\frac{1}{1.8}\left(0.1-0.2x\right)-\frac{1}{12}\left(5x+1\right)
Use the distributive property to multiply \frac{1}{24} by 7x-1.
\frac{7}{24}x+\frac{1}{24}\left(-1\right)=\frac{1}{1.8}\left(0.1-0.2x\right)-\frac{1}{12}\left(5x+1\right)
Multiply \frac{1}{24} and 7 to get \frac{7}{24}.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{1.8}\left(0.1-0.2x\right)-\frac{1}{12}\left(5x+1\right)
Multiply \frac{1}{24} and -1 to get -\frac{1}{24}.
\frac{7}{24}x-\frac{1}{24}=\frac{10}{18}\left(0.1-0.2x\right)-\frac{1}{12}\left(5x+1\right)
Expand \frac{1}{1.8} by multiplying both numerator and the denominator by 10.
\frac{7}{24}x-\frac{1}{24}=\frac{5}{9}\left(0.1-0.2x\right)-\frac{1}{12}\left(5x+1\right)
Reduce the fraction \frac{10}{18} to lowest terms by extracting and canceling out 2.
\frac{7}{24}x-\frac{1}{24}=\frac{5}{9}\times 0.1+\frac{5}{9}\left(-0.2\right)x-\frac{1}{12}\left(5x+1\right)
Use the distributive property to multiply \frac{5}{9} by 0.1-0.2x.
\frac{7}{24}x-\frac{1}{24}=\frac{5}{9}\times \frac{1}{10}+\frac{5}{9}\left(-0.2\right)x-\frac{1}{12}\left(5x+1\right)
Convert decimal number 0.1 to fraction \frac{1}{10}.
\frac{7}{24}x-\frac{1}{24}=\frac{5\times 1}{9\times 10}+\frac{5}{9}\left(-0.2\right)x-\frac{1}{12}\left(5x+1\right)
Multiply \frac{5}{9} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{24}x-\frac{1}{24}=\frac{5}{90}+\frac{5}{9}\left(-0.2\right)x-\frac{1}{12}\left(5x+1\right)
Do the multiplications in the fraction \frac{5\times 1}{9\times 10}.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}+\frac{5}{9}\left(-0.2\right)x-\frac{1}{12}\left(5x+1\right)
Reduce the fraction \frac{5}{90} to lowest terms by extracting and canceling out 5.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}+\frac{5}{9}\left(-\frac{1}{5}\right)x-\frac{1}{12}\left(5x+1\right)
Convert decimal number -0.2 to fraction -\frac{2}{10}. Reduce the fraction -\frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}+\frac{5\left(-1\right)}{9\times 5}x-\frac{1}{12}\left(5x+1\right)
Multiply \frac{5}{9} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}+\frac{-1}{9}x-\frac{1}{12}\left(5x+1\right)
Cancel out 5 in both numerator and denominator.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}-\frac{1}{9}x-\frac{1}{12}\left(5x+1\right)
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}-\frac{1}{9}x-\frac{1}{12}\times 5x-\frac{1}{12}
Use the distributive property to multiply -\frac{1}{12} by 5x+1.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}-\frac{1}{9}x+\frac{-5}{12}x-\frac{1}{12}
Express -\frac{1}{12}\times 5 as a single fraction.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}-\frac{1}{9}x-\frac{5}{12}x-\frac{1}{12}
Fraction \frac{-5}{12} can be rewritten as -\frac{5}{12} by extracting the negative sign.
\frac{7}{24}x-\frac{1}{24}=\frac{1}{18}-\frac{19}{36}x-\frac{1}{12}
Combine -\frac{1}{9}x and -\frac{5}{12}x to get -\frac{19}{36}x.
\frac{7}{24}x-\frac{1}{24}=\frac{2}{36}-\frac{19}{36}x-\frac{3}{36}
Least common multiple of 18 and 12 is 36. Convert \frac{1}{18} and \frac{1}{12} to fractions with denominator 36.
\frac{7}{24}x-\frac{1}{24}=\frac{2-3}{36}-\frac{19}{36}x
Since \frac{2}{36} and \frac{3}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{24}x-\frac{1}{24}=-\frac{1}{36}-\frac{19}{36}x
Subtract 3 from 2 to get -1.
\frac{7}{24}x-\frac{1}{24}+\frac{19}{36}x=-\frac{1}{36}
Add \frac{19}{36}x to both sides.
\frac{59}{72}x-\frac{1}{24}=-\frac{1}{36}
Combine \frac{7}{24}x and \frac{19}{36}x to get \frac{59}{72}x.
\frac{59}{72}x=-\frac{1}{36}+\frac{1}{24}
Add \frac{1}{24} to both sides.
\frac{59}{72}x=-\frac{2}{72}+\frac{3}{72}
Least common multiple of 36 and 24 is 72. Convert -\frac{1}{36} and \frac{1}{24} to fractions with denominator 72.
\frac{59}{72}x=\frac{-2+3}{72}
Since -\frac{2}{72} and \frac{3}{72} have the same denominator, add them by adding their numerators.
\frac{59}{72}x=\frac{1}{72}
Add -2 and 3 to get 1.
x=\frac{1}{72}\times \frac{72}{59}
Multiply both sides by \frac{72}{59}, the reciprocal of \frac{59}{72}.
x=\frac{1\times 72}{72\times 59}
Multiply \frac{1}{72} times \frac{72}{59} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1}{59}
Cancel out 72 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}