Evaluate
\frac{311}{1836}\approx 0.169389978
Factor
\frac{311}{2 ^ {2} \cdot 3 ^ {3} \cdot 17} = 0.16938997821350762
Share
Copied to clipboard
\frac{4}{84}+\frac{3}{84}+\frac{1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Least common multiple of 21 and 28 is 84. Convert \frac{1}{21} and \frac{1}{28} to fractions with denominator 84.
\frac{4+3}{84}+\frac{1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Since \frac{4}{84} and \frac{3}{84} have the same denominator, add them by adding their numerators.
\frac{7}{84}+\frac{1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Add 4 and 3 to get 7.
\frac{1}{12}+\frac{1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Reduce the fraction \frac{7}{84} to lowest terms by extracting and canceling out 7.
\frac{2}{24}+\frac{1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Least common multiple of 12 and 24 is 24. Convert \frac{1}{12} and \frac{1}{24} to fractions with denominator 24.
\frac{2+1}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Since \frac{2}{24} and \frac{1}{24} have the same denominator, add them by adding their numerators.
\frac{3}{24}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Add 2 and 1 to get 3.
\frac{1}{8}+\frac{1}{36}+\frac{1}{108}+\frac{1}{136}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{9}{72}+\frac{2}{72}+\frac{1}{108}+\frac{1}{136}
Least common multiple of 8 and 36 is 72. Convert \frac{1}{8} and \frac{1}{36} to fractions with denominator 72.
\frac{9+2}{72}+\frac{1}{108}+\frac{1}{136}
Since \frac{9}{72} and \frac{2}{72} have the same denominator, add them by adding their numerators.
\frac{11}{72}+\frac{1}{108}+\frac{1}{136}
Add 9 and 2 to get 11.
\frac{33}{216}+\frac{2}{216}+\frac{1}{136}
Least common multiple of 72 and 108 is 216. Convert \frac{11}{72} and \frac{1}{108} to fractions with denominator 216.
\frac{33+2}{216}+\frac{1}{136}
Since \frac{33}{216} and \frac{2}{216} have the same denominator, add them by adding their numerators.
\frac{35}{216}+\frac{1}{136}
Add 33 and 2 to get 35.
\frac{595}{3672}+\frac{27}{3672}
Least common multiple of 216 and 136 is 3672. Convert \frac{35}{216} and \frac{1}{136} to fractions with denominator 3672.
\frac{595+27}{3672}
Since \frac{595}{3672} and \frac{27}{3672} have the same denominator, add them by adding their numerators.
\frac{622}{3672}
Add 595 and 27 to get 622.
\frac{311}{1836}
Reduce the fraction \frac{622}{3672} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}