Solve for x
x=3\sqrt{18655}+410\approx 819.749923734
x=410-3\sqrt{18655}\approx 0.250076266
Graph
Share
Copied to clipboard
\frac{1}{205}x^{2}-4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{205}}}{2\times \frac{1}{205}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{205} for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{205}}}{2\times \frac{1}{205}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{4}{205}}}{2\times \frac{1}{205}}
Multiply -4 times \frac{1}{205}.
x=\frac{-\left(-4\right)±\sqrt{\frac{3276}{205}}}{2\times \frac{1}{205}}
Add 16 to -\frac{4}{205}.
x=\frac{-\left(-4\right)±\frac{6\sqrt{18655}}{205}}{2\times \frac{1}{205}}
Take the square root of \frac{3276}{205}.
x=\frac{4±\frac{6\sqrt{18655}}{205}}{2\times \frac{1}{205}}
The opposite of -4 is 4.
x=\frac{4±\frac{6\sqrt{18655}}{205}}{\frac{2}{205}}
Multiply 2 times \frac{1}{205}.
x=\frac{\frac{6\sqrt{18655}}{205}+4}{\frac{2}{205}}
Now solve the equation x=\frac{4±\frac{6\sqrt{18655}}{205}}{\frac{2}{205}} when ± is plus. Add 4 to \frac{6\sqrt{18655}}{205}.
x=3\sqrt{18655}+410
Divide 4+\frac{6\sqrt{18655}}{205} by \frac{2}{205} by multiplying 4+\frac{6\sqrt{18655}}{205} by the reciprocal of \frac{2}{205}.
x=\frac{-\frac{6\sqrt{18655}}{205}+4}{\frac{2}{205}}
Now solve the equation x=\frac{4±\frac{6\sqrt{18655}}{205}}{\frac{2}{205}} when ± is minus. Subtract \frac{6\sqrt{18655}}{205} from 4.
x=410-3\sqrt{18655}
Divide 4-\frac{6\sqrt{18655}}{205} by \frac{2}{205} by multiplying 4-\frac{6\sqrt{18655}}{205} by the reciprocal of \frac{2}{205}.
x=3\sqrt{18655}+410 x=410-3\sqrt{18655}
The equation is now solved.
\frac{1}{205}x^{2}-4x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{205}x^{2}-4x+1-1=-1
Subtract 1 from both sides of the equation.
\frac{1}{205}x^{2}-4x=-1
Subtracting 1 from itself leaves 0.
\frac{\frac{1}{205}x^{2}-4x}{\frac{1}{205}}=-\frac{1}{\frac{1}{205}}
Multiply both sides by 205.
x^{2}+\left(-\frac{4}{\frac{1}{205}}\right)x=-\frac{1}{\frac{1}{205}}
Dividing by \frac{1}{205} undoes the multiplication by \frac{1}{205}.
x^{2}-820x=-\frac{1}{\frac{1}{205}}
Divide -4 by \frac{1}{205} by multiplying -4 by the reciprocal of \frac{1}{205}.
x^{2}-820x=-205
Divide -1 by \frac{1}{205} by multiplying -1 by the reciprocal of \frac{1}{205}.
x^{2}-820x+\left(-410\right)^{2}=-205+\left(-410\right)^{2}
Divide -820, the coefficient of the x term, by 2 to get -410. Then add the square of -410 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-820x+168100=-205+168100
Square -410.
x^{2}-820x+168100=167895
Add -205 to 168100.
\left(x-410\right)^{2}=167895
Factor x^{2}-820x+168100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-410\right)^{2}}=\sqrt{167895}
Take the square root of both sides of the equation.
x-410=3\sqrt{18655} x-410=-3\sqrt{18655}
Simplify.
x=3\sqrt{18655}+410 x=410-3\sqrt{18655}
Add 410 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}