Solve for x
x=-\frac{y^{3}-6y^{2}+7y+1}{2\left(-y^{2}+6y-7\right)}
y\neq \sqrt{2}+3\text{ and }y\neq 3-\sqrt{2}
Graph
Share
Copied to clipboard
-1=\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
Multiply both sides of the equation by \left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right).
-1=\left(y-\sqrt{2}-3\right)\left(y-\left(-\sqrt{2}+3\right)\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
To find the opposite of \sqrt{2}+3, find the opposite of each term.
-1=\left(y-\sqrt{2}-3\right)\left(y+\sqrt{2}-3\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
To find the opposite of -\sqrt{2}+3, find the opposite of each term.
-1=\left(y^{2}-6y-\left(\sqrt{2}\right)^{2}+9\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
Use the distributive property to multiply y-\sqrt{2}-3 by y+\sqrt{2}-3 and combine like terms.
-1=\left(y^{2}-6y-2+9\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
The square of \sqrt{2} is 2.
-1=\left(y^{2}-6y+7\right)y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
Add -2 and 9 to get 7.
-1=y^{3}-6y^{2}+7y-2x\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(-\sqrt{2}+3\right)\right)
Use the distributive property to multiply y^{2}-6y+7 by y.
-1=y^{3}-6y^{2}+7y-2x\left(y-\sqrt{2}-3\right)\left(y-\left(-\sqrt{2}+3\right)\right)
To find the opposite of \sqrt{2}+3, find the opposite of each term.
-1=y^{3}-6y^{2}+7y-2x\left(y-\sqrt{2}-3\right)\left(y+\sqrt{2}-3\right)
To find the opposite of -\sqrt{2}+3, find the opposite of each term.
-1=y^{3}-6y^{2}+7y+\left(-2xy+2\sqrt{2}x+6x\right)\left(y+\sqrt{2}-3\right)
Use the distributive property to multiply -2x by y-\sqrt{2}-3.
-1=y^{3}-6y^{2}+7y-2xy^{2}+12yx+2x\left(\sqrt{2}\right)^{2}-18x
Use the distributive property to multiply -2xy+2\sqrt{2}x+6x by y+\sqrt{2}-3 and combine like terms.
-1=y^{3}-6y^{2}+7y-2xy^{2}+12yx+2x\times 2-18x
The square of \sqrt{2} is 2.
-1=y^{3}-6y^{2}+7y-2xy^{2}+12yx+4x-18x
Multiply 2 and 2 to get 4.
-1=y^{3}-6y^{2}+7y-2xy^{2}+12yx-14x
Combine 4x and -18x to get -14x.
y^{3}-6y^{2}+7y-2xy^{2}+12yx-14x=-1
Swap sides so that all variable terms are on the left hand side.
-6y^{2}+7y-2xy^{2}+12yx-14x=-1-y^{3}
Subtract y^{3} from both sides.
7y-2xy^{2}+12yx-14x=-1-y^{3}+6y^{2}
Add 6y^{2} to both sides.
-2xy^{2}+12yx-14x=-1-y^{3}+6y^{2}-7y
Subtract 7y from both sides.
\left(-2y^{2}+12y-14\right)x=-1-y^{3}+6y^{2}-7y
Combine all terms containing x.
\left(-2y^{2}+12y-14\right)x=-y^{3}+6y^{2}-7y-1
The equation is in standard form.
\frac{\left(-2y^{2}+12y-14\right)x}{-2y^{2}+12y-14}=\frac{-y^{3}+6y^{2}-7y-1}{-2y^{2}+12y-14}
Divide both sides by -2y^{2}+12y-14.
x=\frac{-y^{3}+6y^{2}-7y-1}{-2y^{2}+12y-14}
Dividing by -2y^{2}+12y-14 undoes the multiplication by -2y^{2}+12y-14.
x=\frac{-y^{3}+6y^{2}-7y-1}{2\left(-y^{2}+6y-7\right)}
Divide 6y^{2}-7y-y^{3}-1 by -2y^{2}+12y-14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}