Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-1+2+\sqrt{3}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}-1+2+\sqrt{3}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}-1+2+\sqrt{3}
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}-1+2+\sqrt{3}
Subtract 3 from 4 to get 1.
2-\sqrt{3}-1+2+\sqrt{3}
Anything divided by one gives itself.
1-\sqrt{3}+2+\sqrt{3}
Subtract 1 from 2 to get 1.
3-\sqrt{3}+\sqrt{3}
Add 1 and 2 to get 3.
3
Combine -\sqrt{3} and \sqrt{3} to get 0.