Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Subtract 3 from 4 to get 1.
2-\sqrt{3}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Anything divided by one gives itself.
2-\sqrt{3}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{3-2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2-\sqrt{3}-\frac{\sqrt{3}}{3}-\frac{1}{\sqrt{3-2}}
The square of \sqrt{3} is 3.
2-\frac{4}{3}\sqrt{3}-\frac{1}{\sqrt{3-2}}
Combine -\sqrt{3} and -\frac{\sqrt{3}}{3} to get -\frac{4}{3}\sqrt{3}.
2-\frac{4}{3}\sqrt{3}-\frac{1}{\sqrt{1}}
Subtract 2 from 3 to get 1.
2-\frac{4}{3}\sqrt{3}-\frac{1}{1}
Calculate the square root of 1 and get 1.
2-\frac{4}{3}\sqrt{3}-1
Anything divided by one gives itself.
1-\frac{4}{3}\sqrt{3}
Subtract 1 from 2 to get 1.