Evaluate
-\frac{4\sqrt{3}}{3}+1\approx -1.309401077
Share
Copied to clipboard
\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Subtract 3 from 4 to get 1.
2-\sqrt{3}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3-2}}
Anything divided by one gives itself.
2-\sqrt{3}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{3-2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2-\sqrt{3}-\frac{\sqrt{3}}{3}-\frac{1}{\sqrt{3-2}}
The square of \sqrt{3} is 3.
2-\frac{4}{3}\sqrt{3}-\frac{1}{\sqrt{3-2}}
Combine -\sqrt{3} and -\frac{\sqrt{3}}{3} to get -\frac{4}{3}\sqrt{3}.
2-\frac{4}{3}\sqrt{3}-\frac{1}{\sqrt{1}}
Subtract 2 from 3 to get 1.
2-\frac{4}{3}\sqrt{3}-\frac{1}{1}
Calculate the square root of 1 and get 1.
2-\frac{4}{3}\sqrt{3}-1
Anything divided by one gives itself.
1-\frac{4}{3}\sqrt{3}
Subtract 1 from 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}