Evaluate
\frac{1471}{4900}\approx 0.300204082
Factor
\frac{1471}{2 ^ {2} \cdot 5 ^ {2} \cdot 7 ^ {2}} = 0.30020408163265305
Share
Copied to clipboard
\frac{1}{6}+\frac{1}{3\times 4}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Multiply 2 and 3 to get 6.
\frac{1}{6}+\frac{1}{12}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Multiply 3 and 4 to get 12.
\frac{2}{12}+\frac{1}{12}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Least common multiple of 6 and 12 is 12. Convert \frac{1}{6} and \frac{1}{12} to fractions with denominator 12.
\frac{2+1}{12}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Since \frac{2}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{3}{12}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Add 2 and 1 to get 3.
\frac{1}{4}+\frac{1}{4\times 5}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{4}+\frac{1}{20}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Multiply 4 and 5 to get 20.
\frac{5}{20}+\frac{1}{20}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Least common multiple of 4 and 20 is 20. Convert \frac{1}{4} and \frac{1}{20} to fractions with denominator 20.
\frac{5+1}{20}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Since \frac{5}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
\frac{6}{20}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Add 5 and 1 to get 6.
\frac{3}{10}+\frac{1}{98\times 99}+\frac{1}{99\times 100}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{3}{10}+\frac{1}{9702}+\frac{1}{99\times 100}
Multiply 98 and 99 to get 9702.
\frac{14553}{48510}+\frac{5}{48510}+\frac{1}{99\times 100}
Least common multiple of 10 and 9702 is 48510. Convert \frac{3}{10} and \frac{1}{9702} to fractions with denominator 48510.
\frac{14553+5}{48510}+\frac{1}{99\times 100}
Since \frac{14553}{48510} and \frac{5}{48510} have the same denominator, add them by adding their numerators.
\frac{14558}{48510}+\frac{1}{99\times 100}
Add 14553 and 5 to get 14558.
\frac{7279}{24255}+\frac{1}{99\times 100}
Reduce the fraction \frac{14558}{48510} to lowest terms by extracting and canceling out 2.
\frac{7279}{24255}+\frac{1}{9900}
Multiply 99 and 100 to get 9900.
\frac{145580}{485100}+\frac{49}{485100}
Least common multiple of 24255 and 9900 is 485100. Convert \frac{7279}{24255} and \frac{1}{9900} to fractions with denominator 485100.
\frac{145580+49}{485100}
Since \frac{145580}{485100} and \frac{49}{485100} have the same denominator, add them by adding their numerators.
\frac{145629}{485100}
Add 145580 and 49 to get 145629.
\frac{1471}{4900}
Reduce the fraction \frac{145629}{485100} to lowest terms by extracting and canceling out 99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}