Evaluate
-1
Factor
-1
Share
Copied to clipboard
\frac{2\sqrt{2}-2}{\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right)}-\frac{1}{2\sqrt{2}-2}
Rationalize the denominator of \frac{1}{2\sqrt{2}+2} by multiplying numerator and denominator by 2\sqrt{2}-2.
\frac{2\sqrt{2}-2}{\left(2\sqrt{2}\right)^{2}-2^{2}}-\frac{1}{2\sqrt{2}-2}
Consider \left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}-2}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}-\frac{1}{2\sqrt{2}-2}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}-2}{4\left(\sqrt{2}\right)^{2}-2^{2}}-\frac{1}{2\sqrt{2}-2}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-2}{4\times 2-2^{2}}-\frac{1}{2\sqrt{2}-2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}-2}{8-2^{2}}-\frac{1}{2\sqrt{2}-2}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}-2}{8-4}-\frac{1}{2\sqrt{2}-2}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-2}{4}-\frac{1}{2\sqrt{2}-2}
Subtract 4 from 8 to get 4.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{\left(2\sqrt{2}-2\right)\left(2\sqrt{2}+2\right)}
Rationalize the denominator of \frac{1}{2\sqrt{2}-2} by multiplying numerator and denominator by 2\sqrt{2}+2.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{\left(2\sqrt{2}\right)^{2}-2^{2}}
Consider \left(2\sqrt{2}-2\right)\left(2\sqrt{2}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{4\left(\sqrt{2}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{4\times 2-2^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{8-2^{2}}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{8-4}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-2}{4}-\frac{2\sqrt{2}+2}{4}
Subtract 4 from 8 to get 4.
\frac{2\sqrt{2}-2-\left(2\sqrt{2}+2\right)}{4}
Since \frac{2\sqrt{2}-2}{4} and \frac{2\sqrt{2}+2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{2}-2-2\sqrt{2}-2}{4}
Do the multiplications in 2\sqrt{2}-2-\left(2\sqrt{2}+2\right).
\frac{-4}{4}
Do the calculations in 2\sqrt{2}-2-2\sqrt{2}-2.
-1
Divide -4 by 4 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}