Evaluate
\frac{5\sqrt{3}}{21\pi }\approx 0.131268785
Share
Copied to clipboard
\frac{1}{2\pi }\sqrt{\frac{196}{72.03\times 4}}
Multiply 14.7 and 4.9 to get 72.03.
\frac{1}{2\pi }\sqrt{\frac{196}{288.12}}
Multiply 72.03 and 4 to get 288.12.
\frac{1}{2\pi }\sqrt{\frac{19600}{28812}}
Expand \frac{196}{288.12} by multiplying both numerator and the denominator by 100.
\frac{1}{2\pi }\sqrt{\frac{100}{147}}
Reduce the fraction \frac{19600}{28812} to lowest terms by extracting and canceling out 196.
\frac{1}{2\pi }\times \frac{\sqrt{100}}{\sqrt{147}}
Rewrite the square root of the division \sqrt{\frac{100}{147}} as the division of square roots \frac{\sqrt{100}}{\sqrt{147}}.
\frac{1}{2\pi }\times \frac{10}{\sqrt{147}}
Calculate the square root of 100 and get 10.
\frac{1}{2\pi }\times \frac{10}{7\sqrt{3}}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
\frac{1}{2\pi }\times \frac{10\sqrt{3}}{7\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{10}{7\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{2\pi }\times \frac{10\sqrt{3}}{7\times 3}
The square of \sqrt{3} is 3.
\frac{1}{2\pi }\times \frac{10\sqrt{3}}{21}
Multiply 7 and 3 to get 21.
\frac{10\sqrt{3}}{2\pi \times 21}
Multiply \frac{1}{2\pi } times \frac{10\sqrt{3}}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{5\sqrt{3}}{21\pi }
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}