Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}y\times 12y+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of 2,6,4y.
6yy+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Multiply \frac{1}{2} and 12 to get 6.
6y^{2}+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Multiply y and y to get y^{2}.
6y^{2}-10y=3+12y\times 2
Multiply 12 and -\frac{5}{6} to get -10.
6y^{2}-10y=3+24y
Multiply 12 and 2 to get 24.
6y^{2}-10y-3=24y
Subtract 3 from both sides.
6y^{2}-10y-3-24y=0
Subtract 24y from both sides.
6y^{2}-34y-3=0
Combine -10y and -24y to get -34y.
y=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -34 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-34\right)±\sqrt{1156-4\times 6\left(-3\right)}}{2\times 6}
Square -34.
y=\frac{-\left(-34\right)±\sqrt{1156-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
y=\frac{-\left(-34\right)±\sqrt{1156+72}}{2\times 6}
Multiply -24 times -3.
y=\frac{-\left(-34\right)±\sqrt{1228}}{2\times 6}
Add 1156 to 72.
y=\frac{-\left(-34\right)±2\sqrt{307}}{2\times 6}
Take the square root of 1228.
y=\frac{34±2\sqrt{307}}{2\times 6}
The opposite of -34 is 34.
y=\frac{34±2\sqrt{307}}{12}
Multiply 2 times 6.
y=\frac{2\sqrt{307}+34}{12}
Now solve the equation y=\frac{34±2\sqrt{307}}{12} when ± is plus. Add 34 to 2\sqrt{307}.
y=\frac{\sqrt{307}+17}{6}
Divide 34+2\sqrt{307} by 12.
y=\frac{34-2\sqrt{307}}{12}
Now solve the equation y=\frac{34±2\sqrt{307}}{12} when ± is minus. Subtract 2\sqrt{307} from 34.
y=\frac{17-\sqrt{307}}{6}
Divide 34-2\sqrt{307} by 12.
y=\frac{\sqrt{307}+17}{6} y=\frac{17-\sqrt{307}}{6}
The equation is now solved.
\frac{1}{2}y\times 12y+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of 2,6,4y.
6yy+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Multiply \frac{1}{2} and 12 to get 6.
6y^{2}+12y\left(-\frac{5}{6}\right)=3+12y\times 2
Multiply y and y to get y^{2}.
6y^{2}-10y=3+12y\times 2
Multiply 12 and -\frac{5}{6} to get -10.
6y^{2}-10y=3+24y
Multiply 12 and 2 to get 24.
6y^{2}-10y-24y=3
Subtract 24y from both sides.
6y^{2}-34y=3
Combine -10y and -24y to get -34y.
\frac{6y^{2}-34y}{6}=\frac{3}{6}
Divide both sides by 6.
y^{2}+\left(-\frac{34}{6}\right)y=\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}-\frac{17}{3}y=\frac{3}{6}
Reduce the fraction \frac{-34}{6} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{17}{3}y=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{17}{3}y+\left(-\frac{17}{6}\right)^{2}=\frac{1}{2}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{17}{3}y+\frac{289}{36}=\frac{1}{2}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{17}{3}y+\frac{289}{36}=\frac{307}{36}
Add \frac{1}{2} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{17}{6}\right)^{2}=\frac{307}{36}
Factor y^{2}-\frac{17}{3}y+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{17}{6}\right)^{2}}=\sqrt{\frac{307}{36}}
Take the square root of both sides of the equation.
y-\frac{17}{6}=\frac{\sqrt{307}}{6} y-\frac{17}{6}=-\frac{\sqrt{307}}{6}
Simplify.
y=\frac{\sqrt{307}+17}{6} y=\frac{17-\sqrt{307}}{6}
Add \frac{17}{6} to both sides of the equation.