Solve for x
x=-\sqrt[6]{6}x_{22}+\frac{11}{2}
Solve for x_22
x_{22}=\frac{6^{\frac{5}{6}}\left(11-2x\right)}{12}
Graph
Share
Copied to clipboard
\frac{1}{2}x-\frac{1}{2}-\left(5-\frac{1}{2}x\right)=-x_{22}\sqrt[6]{6}
Subtract 5-\frac{1}{2}x from both sides.
\frac{1}{2}x-\frac{1}{2}-5+\frac{1}{2}x=-x_{22}\sqrt[6]{6}
To find the opposite of 5-\frac{1}{2}x, find the opposite of each term.
\frac{1}{2}x-\frac{11}{2}+\frac{1}{2}x=-x_{22}\sqrt[6]{6}
Subtract 5 from -\frac{1}{2} to get -\frac{11}{2}.
x-\frac{11}{2}=-x_{22}\sqrt[6]{6}
Combine \frac{1}{2}x and \frac{1}{2}x to get x.
x=-x_{22}\sqrt[6]{6}+\frac{11}{2}
Add \frac{11}{2} to both sides.
5-\frac{1}{2}x-x_{22}\sqrt[6]{6}=\frac{1}{2}x-\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}x-x_{22}\sqrt[6]{6}=\frac{1}{2}x-\frac{1}{2}-5
Subtract 5 from both sides.
-\frac{1}{2}x-x_{22}\sqrt[6]{6}=\frac{1}{2}x-\frac{11}{2}
Subtract 5 from -\frac{1}{2} to get -\frac{11}{2}.
-x_{22}\sqrt[6]{6}=\frac{1}{2}x-\frac{11}{2}+\frac{1}{2}x
Add \frac{1}{2}x to both sides.
-x_{22}\sqrt[6]{6}=x-\frac{11}{2}
Combine \frac{1}{2}x and \frac{1}{2}x to get x.
\left(-\sqrt[6]{6}\right)x_{22}=x-\frac{11}{2}
The equation is in standard form.
\frac{\left(-\sqrt[6]{6}\right)x_{22}}{-\sqrt[6]{6}}=\frac{x-\frac{11}{2}}{-\sqrt[6]{6}}
Divide both sides by -\sqrt[6]{6}.
x_{22}=\frac{x-\frac{11}{2}}{-\sqrt[6]{6}}
Dividing by -\sqrt[6]{6} undoes the multiplication by -\sqrt[6]{6}.
x_{22}=-\frac{2x-11}{2\sqrt[6]{6}}
Divide x-\frac{11}{2} by -\sqrt[6]{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}