Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
\frac{1}{2}x\times 5x+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Use the distributive property to multiply \frac{1}{2}x by 5x-1.
\frac{1}{2}x^{2}\times 5+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply x and x to get x^{2}.
\frac{5}{2}x^{2}+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}-\frac{1}{2}x+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Combine -\frac{1}{2}x and 5x to get \frac{9}{2}x.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5x+5-1\right)
Use the distributive property to multiply 5 by x+1.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5x+4\right)
Subtract 1 from 5 to get 4.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\left(\frac{1}{2}x+\frac{1}{2}\right)\left(5x+4\right)
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}x\times 5x+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{2} by each term of 5x+4.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}x^{2}\times 5+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply x and x to get x^{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{4}{2}x+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+2x+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Divide 4 by 2 to get 2.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+2x+\frac{5}{2}x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+\frac{1}{2}\times 4
Combine 2x and \frac{5}{2}x to get \frac{9}{2}x.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+\frac{4}{2}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+2
Divide 4 by 2 to get 2.
\frac{5}{2}x^{2}+\frac{9}{2}x+2-\frac{5}{2}x^{2}=\frac{9}{2}x+2
Subtract \frac{5}{2}x^{2} from both sides.
\frac{9}{2}x+2=\frac{9}{2}x+2
Combine \frac{5}{2}x^{2} and -\frac{5}{2}x^{2} to get 0.
\frac{9}{2}x+2-\frac{9}{2}x=2
Subtract \frac{9}{2}x from both sides.
2=2
Combine \frac{9}{2}x and -\frac{9}{2}x to get 0.
\text{true}
Compare 2 and 2.
x\in \mathrm{C}
This is true for any x.
\frac{1}{2}x\times 5x+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Use the distributive property to multiply \frac{1}{2}x by 5x-1.
\frac{1}{2}x^{2}\times 5+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply x and x to get x^{2}.
\frac{5}{2}x^{2}+\frac{1}{2}x\left(-1\right)+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}-\frac{1}{2}x+5x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5\left(x+1\right)-1\right)
Combine -\frac{1}{2}x and 5x to get \frac{9}{2}x.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5x+5-1\right)
Use the distributive property to multiply 5 by x+1.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}\left(x+1\right)\left(5x+4\right)
Subtract 1 from 5 to get 4.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\left(\frac{1}{2}x+\frac{1}{2}\right)\left(5x+4\right)
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}x\times 5x+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{2} by each term of 5x+4.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{1}{2}x^{2}\times 5+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply x and x to get x^{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{1}{2}x\times 4+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{4}{2}x+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+2x+\frac{1}{2}\times 5x+\frac{1}{2}\times 4
Divide 4 by 2 to get 2.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+2x+\frac{5}{2}x+\frac{1}{2}\times 4
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+\frac{1}{2}\times 4
Combine 2x and \frac{5}{2}x to get \frac{9}{2}x.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+\frac{4}{2}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{5}{2}x^{2}+\frac{9}{2}x+2=\frac{5}{2}x^{2}+\frac{9}{2}x+2
Divide 4 by 2 to get 2.
\frac{5}{2}x^{2}+\frac{9}{2}x+2-\frac{5}{2}x^{2}=\frac{9}{2}x+2
Subtract \frac{5}{2}x^{2} from both sides.
\frac{9}{2}x+2=\frac{9}{2}x+2
Combine \frac{5}{2}x^{2} and -\frac{5}{2}x^{2} to get 0.
\frac{9}{2}x+2-\frac{9}{2}x=2
Subtract \frac{9}{2}x from both sides.
2=2
Combine \frac{9}{2}x and -\frac{9}{2}x to get 0.
\text{true}
Compare 2 and 2.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}