Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for x
x=\sqrt{34}\approx 5.830951895
x=-\sqrt{34}\approx -5.830951895
Steps by Finding Square Root
Steps Using the Quadratic Formula
View solution steps
Steps by Finding Square Root
\frac{ 1 }{ 2 } x+x = \frac{ 51 }{ x }
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
\frac{1}{2}x\times 2x+2xx=2\times 51
Cancel out 2 and 2.
xx+2xx=2\times 51
Multiply x and x to get x^{2}.
x^{2}+2xx=2\times 51
Multiply x and x to get x^{2}.
x^{2}+2x^{2}=2\times 51
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}=2\times 51
Multiply 2 and 51 to get 102.
3x^{2}=102
Divide both sides by 3.
x^{2}=\frac{102}{3}
Divide 102 by 3 to get 34.
x^{2}=34
Take the square root of both sides of the equation.
x=\sqrt{34} x=-\sqrt{34}
Graph
Graph Both Sides in 2D
Graph in 2D
Quiz
Polynomial
5 problems similar to:
\frac{ 1 }{ 2 } x+x = \frac{ 51 }{ x }
Similar Problems from Web Search
How do you solve \displaystyle{\left(\frac{{1}}{{4}}\right)}+{\left(\frac{{1}}{{x}}\right)}={\left(\frac{{1}}{{3}}\right)} ?
https://socratic.org/questions/how-do-you-solve-1-4-1-x-1-3
See a solution process below: Explanation: First, we can multiply each side of the equation by \displaystyle{\left({12}\right)}{\left({x}\right)} to eliminate the fractions while keeping the ...
How do you solve \displaystyle\frac{{1}}{{3}}{x}-\frac{{1}}{{9}}{<}\frac{{1}}{{6}} ?
https://socratic.org/questions/how-do-you-solve-1-3x-1-9-1-6
See the entire solution process below: Explanation: First, multiple the entire inequality by \displaystyle{\left({18}\right)} (the lowest common denominator of the fractions) to eliminate the ...
Is \displaystyle{f{{\left({x}\right)}}}=\frac{{1}}{{{x}-{1}}}-{2}{x} concave or convex at \displaystyle{x}={0} ?
https://socratic.org/questions/is-f-x-1-x-1-2x-concave-or-convex-at-x-0
\displaystyle\text{concave at x = 0} Explanation: To determine if f(x) is concave/convex at f( a) we require to find the value of f''( a) \displaystyle•\text{If }\ {f}{''}{\left({a}\right)}{>}{0}\ \text{ then f(x) is convex at x = a} ...
If \displaystyle{f{{\left({x}\right)}}}=\frac{{12}}{{{4}{x}+{2}}} , what is \displaystyle{f{{\left(-{1}\right)}}} ?
https://socratic.org/questions/if-f-x-12-4x-2-what-is-f-1
\displaystyle=-{6} Explanation: \displaystyle{f{{\left({x}\right)}}}=\frac{{12}}{{{4}{x}+{2}}} \displaystyle{f{{\left(-{1}\right)}}}=\frac{{12}}{{{4}{\left(-{1}\right)}+{2}}} \displaystyle=\frac{{12}}{{-{4}+{2}}} ...
How do you solve \displaystyle\frac{{1}}{{2}}+\frac{{2}}{{x}}=\frac{{1}}{{x}} ?
https://socratic.org/questions/how-do-you-solve-1-2-2-x-1-x
\displaystyle-{2} Explanation: we need to clear all the denominators first. multiply everything by \displaystyle{x} \displaystyle\frac{{1}}{{2}}{x}+{2}\cancel{{\frac{{x}}{{x}}}}=\cancel{{\frac{{x}}{{x}}}}^{{1}} ...
How do you solve \displaystyle\frac{{1}}{{{2}{x}}}+\frac{{2}}{{x}}=\frac{{1}}{{8}} ?
https://socratic.org/questions/how-do-you-solve-1-2x-2-x-1-8
\displaystyle\text{the answer is x=20} Explanation: \displaystyle\text{given : }\ \frac{{1}}{{{2}{x}}}+\frac{{2}}{{{x}}}=\frac{{1}}{{8}} \displaystyle{\left(\frac{{4}}{{4}}\right)}\cdot\frac{{1}}{{{2}{x}}}+{\left(\frac{{8}}{{8}}\right)}\frac{{.2}}{{x}}={\left(\frac{{x}}{{x}}\right)}\cdot\frac{{1}}{{8}} ...
More Items
Share
Copy
Copied to clipboard
\frac{1}{2}x\times 2x+2xx=2\times 51
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
xx+2xx=2\times 51
Cancel out 2 and 2.
x^{2}+2xx=2\times 51
Multiply x and x to get x^{2}.
x^{2}+2x^{2}=2\times 51
Multiply x and x to get x^{2}.
3x^{2}=2\times 51
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}=102
Multiply 2 and 51 to get 102.
x^{2}=\frac{102}{3}
Divide both sides by 3.
x^{2}=34
Divide 102 by 3 to get 34.
x=\sqrt{34} x=-\sqrt{34}
Take the square root of both sides of the equation.
\frac{1}{2}x\times 2x+2xx=2\times 51
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
xx+2xx=2\times 51
Cancel out 2 and 2.
x^{2}+2xx=2\times 51
Multiply x and x to get x^{2}.
x^{2}+2x^{2}=2\times 51
Multiply x and x to get x^{2}.
3x^{2}=2\times 51
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}=102
Multiply 2 and 51 to get 102.
3x^{2}-102=0
Subtract 102 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-102\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -102 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-102\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-102\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{1224}}{2\times 3}
Multiply -12 times -102.
x=\frac{0±6\sqrt{34}}{2\times 3}
Take the square root of 1224.
x=\frac{0±6\sqrt{34}}{6}
Multiply 2 times 3.
x=\sqrt{34}
Now solve the equation x=\frac{0±6\sqrt{34}}{6} when ± is plus.
x=-\sqrt{34}
Now solve the equation x=\frac{0±6\sqrt{34}}{6} when ± is minus.
x=\sqrt{34} x=-\sqrt{34}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top