Solve for x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
Graph
Share
Copied to clipboard
-\frac{1}{2}x+6=\frac{11}{4}
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-\frac{1}{2}x=\frac{11}{4}-6
Subtract 6 from both sides.
-\frac{1}{2}x=\frac{11}{4}-\frac{24}{4}
Convert 6 to fraction \frac{24}{4}.
-\frac{1}{2}x=\frac{11-24}{4}
Since \frac{11}{4} and \frac{24}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}x=-\frac{13}{4}
Subtract 24 from 11 to get -13.
x=-\frac{13}{4}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=\frac{-13\left(-2\right)}{4}
Express -\frac{13}{4}\left(-2\right) as a single fraction.
x=\frac{26}{4}
Multiply -13 and -2 to get 26.
x=\frac{13}{2}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}