Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x+\frac{3}{4}x+\frac{3}{4}\left(-2\right)=\frac{1}{3}\left(2x-3\right)
Use the distributive property to multiply \frac{3}{4} by x-2.
\frac{1}{2}x+\frac{3}{4}x+\frac{3\left(-2\right)}{4}=\frac{1}{3}\left(2x-3\right)
Express \frac{3}{4}\left(-2\right) as a single fraction.
\frac{1}{2}x+\frac{3}{4}x+\frac{-6}{4}=\frac{1}{3}\left(2x-3\right)
Multiply 3 and -2 to get -6.
\frac{1}{2}x+\frac{3}{4}x-\frac{3}{2}=\frac{1}{3}\left(2x-3\right)
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{4}x-\frac{3}{2}=\frac{1}{3}\left(2x-3\right)
Combine \frac{1}{2}x and \frac{3}{4}x to get \frac{5}{4}x.
\frac{5}{4}x-\frac{3}{2}=\frac{1}{3}\times 2x+\frac{1}{3}\left(-3\right)
Use the distributive property to multiply \frac{1}{3} by 2x-3.
\frac{5}{4}x-\frac{3}{2}=\frac{2}{3}x+\frac{1}{3}\left(-3\right)
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{5}{4}x-\frac{3}{2}=\frac{2}{3}x+\frac{-3}{3}
Multiply \frac{1}{3} and -3 to get \frac{-3}{3}.
\frac{5}{4}x-\frac{3}{2}=\frac{2}{3}x-1
Divide -3 by 3 to get -1.
\frac{5}{4}x-\frac{3}{2}-\frac{2}{3}x=-1
Subtract \frac{2}{3}x from both sides.
\frac{7}{12}x-\frac{3}{2}=-1
Combine \frac{5}{4}x and -\frac{2}{3}x to get \frac{7}{12}x.
\frac{7}{12}x=-1+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{7}{12}x=-\frac{2}{2}+\frac{3}{2}
Convert -1 to fraction -\frac{2}{2}.
\frac{7}{12}x=\frac{-2+3}{2}
Since -\frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{7}{12}x=\frac{1}{2}
Add -2 and 3 to get 1.
x=\frac{1}{2}\times \frac{12}{7}
Multiply both sides by \frac{12}{7}, the reciprocal of \frac{7}{12}.
x=\frac{1\times 12}{2\times 7}
Multiply \frac{1}{2} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{14}
Do the multiplications in the fraction \frac{1\times 12}{2\times 7}.
x=\frac{6}{7}
Reduce the fraction \frac{12}{14} to lowest terms by extracting and canceling out 2.