Solve for p
p=-\frac{r}{2}-\frac{2q}{3}+2s
Solve for q
q=-\frac{3p}{2}-\frac{3r}{4}+3s
Quiz
Linear Equation
5 problems similar to:
\frac{ 1 }{ 2 } p+ \frac{ 1 }{ 3 } q+ \frac{ 1 }{ 4 } r = s
Share
Copied to clipboard
\frac{1}{2}p+\frac{1}{4}r=s-\frac{1}{3}q
Subtract \frac{1}{3}q from both sides.
\frac{1}{2}p=s-\frac{1}{3}q-\frac{1}{4}r
Subtract \frac{1}{4}r from both sides.
\frac{1}{2}p=-\frac{q}{3}-\frac{r}{4}+s
The equation is in standard form.
\frac{\frac{1}{2}p}{\frac{1}{2}}=\frac{-\frac{q}{3}-\frac{r}{4}+s}{\frac{1}{2}}
Multiply both sides by 2.
p=\frac{-\frac{q}{3}-\frac{r}{4}+s}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
p=-\frac{r}{2}-\frac{2q}{3}+2s
Divide s-\frac{q}{3}-\frac{r}{4} by \frac{1}{2} by multiplying s-\frac{q}{3}-\frac{r}{4} by the reciprocal of \frac{1}{2}.
\frac{1}{3}q+\frac{1}{4}r=s-\frac{1}{2}p
Subtract \frac{1}{2}p from both sides.
\frac{1}{3}q=s-\frac{1}{2}p-\frac{1}{4}r
Subtract \frac{1}{4}r from both sides.
\frac{1}{3}q=-\frac{p}{2}-\frac{r}{4}+s
The equation is in standard form.
\frac{\frac{1}{3}q}{\frac{1}{3}}=\frac{-\frac{p}{2}-\frac{r}{4}+s}{\frac{1}{3}}
Multiply both sides by 3.
q=\frac{-\frac{p}{2}-\frac{r}{4}+s}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
q=-\frac{3p}{2}-\frac{3r}{4}+3s
Divide s-\frac{p}{2}-\frac{r}{4} by \frac{1}{3} by multiplying s-\frac{p}{2}-\frac{r}{4} by the reciprocal of \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}