Solve for g
\left\{\begin{matrix}g=-\frac{3\sqrt{59R}}{5t}+\frac{18R}{5t^{2}}\text{, }&t\neq 0\text{ and }R\geq 0\\g\in \mathrm{R}\text{, }&R=0\text{ and }t=0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=\frac{\left(20g+\sqrt{59\left(40g+59\right)}+59\right)t^{2}}{72}\text{, }&g\geq -\frac{59}{40}\text{ and }t>0\\R=-\frac{\left(-20g+\sqrt{59\left(40g+59\right)}-59\right)t^{2}}{72}\text{, }&\left(g\geq 0\text{ and }t<0\right)\text{ or }\left(g\leq 0\text{ and }g\geq -\frac{59}{40}\text{ and }t>0\right)\\R=0\text{, }&\sqrt{59}t=0\end{matrix}\right.
Share
Copied to clipboard
5gt^{2}+3\sqrt{59R}t-18R=0
Multiply both sides of the equation by 10, the least common multiple of 2,10,5.
5gt^{2}-18R=-3\sqrt{59R}t
Subtract 3\sqrt{59R}t from both sides. Anything subtracted from zero gives its negation.
5gt^{2}=-3\sqrt{59R}t+18R
Add 18R to both sides.
5t^{2}g=-3\sqrt{59R}t+18R
The equation is in standard form.
\frac{5t^{2}g}{5t^{2}}=\frac{-3\sqrt{59R}t+18R}{5t^{2}}
Divide both sides by 5t^{2}.
g=\frac{-3\sqrt{59R}t+18R}{5t^{2}}
Dividing by 5t^{2} undoes the multiplication by 5t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}