Evaluate
\frac{509}{2}=254.5
Factor
\frac{509}{2} = 254\frac{1}{2} = 254.5
Share
Copied to clipboard
\frac{1}{2}\times 72+\frac{2}{4}\left(7-2\right)+2\times 72+1\times 72
Divide 2 by 2 to get 1.
\frac{1}{2}\times 72+\frac{2}{4}\left(7-2\right)+144+72
Multiply 2 and 72 to get 144. Multiply 1 and 72 to get 72.
\frac{72}{2}+\frac{2}{4}\left(7-2\right)+144+72
Multiply \frac{1}{2} and 72 to get \frac{72}{2}.
36+\frac{2}{4}\left(7-2\right)+144+72
Divide 72 by 2 to get 36.
36+\frac{1}{2}\left(7-2\right)+144+72
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
36+\frac{1}{2}\times 5+144+72
Subtract 2 from 7 to get 5.
36+\frac{5}{2}+144+72
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{72}{2}+\frac{5}{2}+144+72
Convert 36 to fraction \frac{72}{2}.
\frac{72+5}{2}+144+72
Since \frac{72}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{77}{2}+144+72
Add 72 and 5 to get 77.
\frac{77}{2}+\frac{288}{2}+72
Convert 144 to fraction \frac{288}{2}.
\frac{77+288}{2}+72
Since \frac{77}{2} and \frac{288}{2} have the same denominator, add them by adding their numerators.
\frac{365}{2}+72
Add 77 and 288 to get 365.
\frac{365}{2}+\frac{144}{2}
Convert 72 to fraction \frac{144}{2}.
\frac{365+144}{2}
Since \frac{365}{2} and \frac{144}{2} have the same denominator, add them by adding their numerators.
\frac{509}{2}
Add 365 and 144 to get 509.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}