Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}-\frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2}
To raise \frac{2+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}-\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}\times 2}
Express \frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2} as a single fraction.
\frac{1}{2}-\frac{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}\times 2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{1}{2}-\frac{4+4\sqrt{3}+3}{2^{2}\times 2}
The square of \sqrt{3} is 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{2}\times 2}
Add 4 and 3 to get 7.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{4}{8}-\frac{7+4\sqrt{3}}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 8 is 8. Multiply \frac{1}{2} times \frac{4}{4}.
\frac{4-\left(7+4\sqrt{3}\right)}{8}
Since \frac{4}{8} and \frac{7+4\sqrt{3}}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{4-7-4\sqrt{3}}{8}
Do the multiplications in 4-\left(7+4\sqrt{3}\right).
\frac{-3-4\sqrt{3}}{8}
Do the calculations in 4-7-4\sqrt{3}.
\frac{1}{2}-\frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2}
To raise \frac{2+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}-\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}\times 2}
Express \frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2} as a single fraction.
\frac{1}{2}-\frac{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}\times 2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{1}{2}-\frac{4+4\sqrt{3}+3}{2^{2}\times 2}
The square of \sqrt{3} is 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{2}\times 2}
Add 4 and 3 to get 7.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{4}{8}-\frac{7+4\sqrt{3}}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 8 is 8. Multiply \frac{1}{2} times \frac{4}{4}.
\frac{4-\left(7+4\sqrt{3}\right)}{8}
Since \frac{4}{8} and \frac{7+4\sqrt{3}}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{4-7-4\sqrt{3}}{8}
Do the multiplications in 4-\left(7+4\sqrt{3}\right).
\frac{-3-4\sqrt{3}}{8}
Do the calculations in 4-7-4\sqrt{3}.