Evaluate
-\frac{\sqrt{3}}{2}-\frac{3}{8}\approx -1.241025404
Expand
-\frac{\sqrt{3}}{2} - \frac{3}{8} = -1.241025404
Share
Copied to clipboard
\frac{1}{2}-\frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2}
To raise \frac{2+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}-\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}\times 2}
Express \frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2} as a single fraction.
\frac{1}{2}-\frac{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}\times 2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{1}{2}-\frac{4+4\sqrt{3}+3}{2^{2}\times 2}
The square of \sqrt{3} is 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{2}\times 2}
Add 4 and 3 to get 7.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{4}{8}-\frac{7+4\sqrt{3}}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 8 is 8. Multiply \frac{1}{2} times \frac{4}{4}.
\frac{4-\left(7+4\sqrt{3}\right)}{8}
Since \frac{4}{8} and \frac{7+4\sqrt{3}}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{4-7-4\sqrt{3}}{8}
Do the multiplications in 4-\left(7+4\sqrt{3}\right).
\frac{-3-4\sqrt{3}}{8}
Do the calculations in 4-7-4\sqrt{3}.
\frac{1}{2}-\frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2}
To raise \frac{2+\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}-\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}\times 2}
Express \frac{\frac{\left(2+\sqrt{3}\right)^{2}}{2^{2}}}{2} as a single fraction.
\frac{1}{2}-\frac{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2^{2}\times 2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{1}{2}-\frac{4+4\sqrt{3}+3}{2^{2}\times 2}
The square of \sqrt{3} is 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{2}\times 2}
Add 4 and 3 to get 7.
\frac{1}{2}-\frac{7+4\sqrt{3}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}-\frac{7+4\sqrt{3}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{4}{8}-\frac{7+4\sqrt{3}}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 8 is 8. Multiply \frac{1}{2} times \frac{4}{4}.
\frac{4-\left(7+4\sqrt{3}\right)}{8}
Since \frac{4}{8} and \frac{7+4\sqrt{3}}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{4-7-4\sqrt{3}}{8}
Do the multiplications in 4-\left(7+4\sqrt{3}\right).
\frac{-3-4\sqrt{3}}{8}
Do the calculations in 4-7-4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}