Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x-3\right)\left(2x-8\right)=1
Use the distributive property to multiply \frac{1}{2} by x-6.
x^{2}-10x+24=1
Use the distributive property to multiply \frac{1}{2}x-3 by 2x-8 and combine like terms.
x^{2}-10x+24-1=0
Subtract 1 from both sides.
x^{2}-10x+23=0
Subtract 1 from 24 to get 23.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 23}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 23}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-92}}{2}
Multiply -4 times 23.
x=\frac{-\left(-10\right)±\sqrt{8}}{2}
Add 100 to -92.
x=\frac{-\left(-10\right)±2\sqrt{2}}{2}
Take the square root of 8.
x=\frac{10±2\sqrt{2}}{2}
The opposite of -10 is 10.
x=\frac{2\sqrt{2}+10}{2}
Now solve the equation x=\frac{10±2\sqrt{2}}{2} when ± is plus. Add 10 to 2\sqrt{2}.
x=\sqrt{2}+5
Divide 10+2\sqrt{2} by 2.
x=\frac{10-2\sqrt{2}}{2}
Now solve the equation x=\frac{10±2\sqrt{2}}{2} when ± is minus. Subtract 2\sqrt{2} from 10.
x=5-\sqrt{2}
Divide 10-2\sqrt{2} by 2.
x=\sqrt{2}+5 x=5-\sqrt{2}
The equation is now solved.
\left(\frac{1}{2}x-3\right)\left(2x-8\right)=1
Use the distributive property to multiply \frac{1}{2} by x-6.
x^{2}-10x+24=1
Use the distributive property to multiply \frac{1}{2}x-3 by 2x-8 and combine like terms.
x^{2}-10x=1-24
Subtract 24 from both sides.
x^{2}-10x=-23
Subtract 24 from 1 to get -23.
x^{2}-10x+\left(-5\right)^{2}=-23+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-23+25
Square -5.
x^{2}-10x+25=2
Add -23 to 25.
\left(x-5\right)^{2}=2
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-5=\sqrt{2} x-5=-\sqrt{2}
Simplify.
x=\sqrt{2}+5 x=5-\sqrt{2}
Add 5 to both sides of the equation.