Solve for x
x=-14
x=6
Graph
Share
Copied to clipboard
\left(\frac{1}{2}x+\frac{1}{2}\times 8\right)x=42
Use the distributive property to multiply \frac{1}{2} by x+8.
\left(\frac{1}{2}x+\frac{8}{2}\right)x=42
Multiply \frac{1}{2} and 8 to get \frac{8}{2}.
\left(\frac{1}{2}x+4\right)x=42
Divide 8 by 2 to get 4.
\frac{1}{2}xx+4x=42
Use the distributive property to multiply \frac{1}{2}x+4 by x.
\frac{1}{2}x^{2}+4x=42
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+4x-42=0
Subtract 42 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times \frac{1}{2}\left(-42\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 4 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times \frac{1}{2}\left(-42\right)}}{2\times \frac{1}{2}}
Square 4.
x=\frac{-4±\sqrt{16-2\left(-42\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-4±\sqrt{16+84}}{2\times \frac{1}{2}}
Multiply -2 times -42.
x=\frac{-4±\sqrt{100}}{2\times \frac{1}{2}}
Add 16 to 84.
x=\frac{-4±10}{2\times \frac{1}{2}}
Take the square root of 100.
x=\frac{-4±10}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{6}{1}
Now solve the equation x=\frac{-4±10}{1} when ± is plus. Add -4 to 10.
x=6
Divide 6 by 1.
x=-\frac{14}{1}
Now solve the equation x=\frac{-4±10}{1} when ± is minus. Subtract 10 from -4.
x=-14
Divide -14 by 1.
x=6 x=-14
The equation is now solved.
\left(\frac{1}{2}x+\frac{1}{2}\times 8\right)x=42
Use the distributive property to multiply \frac{1}{2} by x+8.
\left(\frac{1}{2}x+\frac{8}{2}\right)x=42
Multiply \frac{1}{2} and 8 to get \frac{8}{2}.
\left(\frac{1}{2}x+4\right)x=42
Divide 8 by 2 to get 4.
\frac{1}{2}xx+4x=42
Use the distributive property to multiply \frac{1}{2}x+4 by x.
\frac{1}{2}x^{2}+4x=42
Multiply x and x to get x^{2}.
\frac{\frac{1}{2}x^{2}+4x}{\frac{1}{2}}=\frac{42}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{4}{\frac{1}{2}}x=\frac{42}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+8x=\frac{42}{\frac{1}{2}}
Divide 4 by \frac{1}{2} by multiplying 4 by the reciprocal of \frac{1}{2}.
x^{2}+8x=84
Divide 42 by \frac{1}{2} by multiplying 42 by the reciprocal of \frac{1}{2}.
x^{2}+8x+4^{2}=84+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=84+16
Square 4.
x^{2}+8x+16=100
Add 84 to 16.
\left(x+4\right)^{2}=100
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x+4=10 x+4=-10
Simplify.
x=6 x=-14
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}