Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times 3x+\frac{1}{2}\left(-1\right)=\frac{1}{5}\left(4x+2\right)-1
Use the distributive property to multiply \frac{1}{2} by 3x-1.
\frac{3}{2}x+\frac{1}{2}\left(-1\right)=\frac{1}{5}\left(4x+2\right)-1
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x-\frac{1}{2}=\frac{1}{5}\left(4x+2\right)-1
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}x-\frac{1}{2}=\frac{1}{5}\times 4x+\frac{1}{5}\times 2-1
Use the distributive property to multiply \frac{1}{5} by 4x+2.
\frac{3}{2}x-\frac{1}{2}=\frac{4}{5}x+\frac{1}{5}\times 2-1
Multiply \frac{1}{5} and 4 to get \frac{4}{5}.
\frac{3}{2}x-\frac{1}{2}=\frac{4}{5}x+\frac{2}{5}-1
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{3}{2}x-\frac{1}{2}=\frac{4}{5}x+\frac{2}{5}-\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{3}{2}x-\frac{1}{2}=\frac{4}{5}x+\frac{2-5}{5}
Since \frac{2}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}x-\frac{1}{2}=\frac{4}{5}x-\frac{3}{5}
Subtract 5 from 2 to get -3.
\frac{3}{2}x-\frac{1}{2}-\frac{4}{5}x=-\frac{3}{5}
Subtract \frac{4}{5}x from both sides.
\frac{7}{10}x-\frac{1}{2}=-\frac{3}{5}
Combine \frac{3}{2}x and -\frac{4}{5}x to get \frac{7}{10}x.
\frac{7}{10}x=-\frac{3}{5}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{7}{10}x=-\frac{6}{10}+\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{7}{10}x=\frac{-6+5}{10}
Since -\frac{6}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
\frac{7}{10}x=-\frac{1}{10}
Add -6 and 5 to get -1.
x=-\frac{1}{10}\times \frac{10}{7}
Multiply both sides by \frac{10}{7}, the reciprocal of \frac{7}{10}.
x=\frac{-10}{10\times 7}
Multiply -\frac{1}{10} times \frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1}{7}
Cancel out 10 in both numerator and denominator.
x=-\frac{1}{7}
Fraction \frac{-1}{7} can be rewritten as -\frac{1}{7} by extracting the negative sign.