Evaluate
\frac{3033}{220}\approx 13.786363636
Factor
\frac{3 ^ {2} \cdot 337}{2 ^ {2} \cdot 5 \cdot 11} = 13\frac{173}{220} = 13.786363636363637
Share
Copied to clipboard
\frac{1}{2}+\frac{3}{4}+2+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+\frac{1}{1}+\frac{5}{2}+\frac{7}{11}
Divide 2 by 2 to get 1.
\frac{1}{2}+\frac{3}{4}+2+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Divide 1 by 1 to get 1.
\frac{2}{4}+\frac{3}{4}+2+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{2+3}{4}+2+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}+2+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Add 2 and 3 to get 5.
\frac{5}{4}+\frac{8}{4}+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Convert 2 to fraction \frac{8}{4}.
\frac{5+8}{4}+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{5}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
\frac{13}{4}+1+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Add 5 and 8 to get 13.
\frac{13}{4}+\frac{4}{4}+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Convert 1 to fraction \frac{4}{4}.
\frac{13+4}{4}+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{13}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{17}{4}+\frac{4}{3}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Add 13 and 4 to get 17.
\frac{51}{12}+\frac{16}{12}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Least common multiple of 4 and 3 is 12. Convert \frac{17}{4} and \frac{4}{3} to fractions with denominator 12.
\frac{51+16}{12}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{51}{12} and \frac{16}{12} have the same denominator, add them by adding their numerators.
\frac{67}{12}+\frac{2}{5}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Add 51 and 16 to get 67.
\frac{335}{60}+\frac{24}{60}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Least common multiple of 12 and 5 is 60. Convert \frac{67}{12} and \frac{2}{5} to fractions with denominator 60.
\frac{335+24}{60}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{335}{60} and \frac{24}{60} have the same denominator, add them by adding their numerators.
\frac{359}{60}+\frac{8}{3}+1+1+\frac{5}{2}+\frac{7}{11}
Add 335 and 24 to get 359.
\frac{359}{60}+\frac{160}{60}+1+1+\frac{5}{2}+\frac{7}{11}
Least common multiple of 60 and 3 is 60. Convert \frac{359}{60} and \frac{8}{3} to fractions with denominator 60.
\frac{359+160}{60}+1+1+\frac{5}{2}+\frac{7}{11}
Since \frac{359}{60} and \frac{160}{60} have the same denominator, add them by adding their numerators.
\frac{519}{60}+1+1+\frac{5}{2}+\frac{7}{11}
Add 359 and 160 to get 519.
\frac{173}{20}+1+1+\frac{5}{2}+\frac{7}{11}
Reduce the fraction \frac{519}{60} to lowest terms by extracting and canceling out 3.
\frac{173}{20}+\frac{20}{20}+1+\frac{5}{2}+\frac{7}{11}
Convert 1 to fraction \frac{20}{20}.
\frac{173+20}{20}+1+\frac{5}{2}+\frac{7}{11}
Since \frac{173}{20} and \frac{20}{20} have the same denominator, add them by adding their numerators.
\frac{193}{20}+1+\frac{5}{2}+\frac{7}{11}
Add 173 and 20 to get 193.
\frac{193}{20}+\frac{20}{20}+\frac{5}{2}+\frac{7}{11}
Convert 1 to fraction \frac{20}{20}.
\frac{193+20}{20}+\frac{5}{2}+\frac{7}{11}
Since \frac{193}{20} and \frac{20}{20} have the same denominator, add them by adding their numerators.
\frac{213}{20}+\frac{5}{2}+\frac{7}{11}
Add 193 and 20 to get 213.
\frac{213}{20}+\frac{50}{20}+\frac{7}{11}
Least common multiple of 20 and 2 is 20. Convert \frac{213}{20} and \frac{5}{2} to fractions with denominator 20.
\frac{213+50}{20}+\frac{7}{11}
Since \frac{213}{20} and \frac{50}{20} have the same denominator, add them by adding their numerators.
\frac{263}{20}+\frac{7}{11}
Add 213 and 50 to get 263.
\frac{2893}{220}+\frac{140}{220}
Least common multiple of 20 and 11 is 220. Convert \frac{263}{20} and \frac{7}{11} to fractions with denominator 220.
\frac{2893+140}{220}
Since \frac{2893}{220} and \frac{140}{220} have the same denominator, add them by adding their numerators.
\frac{3033}{220}
Add 2893 and 140 to get 3033.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}