Evaluate
\frac{23}{35}\approx 0.657142857
Factor
\frac{23}{5 \cdot 7} = 0.6571428571428571
Share
Copied to clipboard
\frac{1}{2}+\frac{\frac{1\times 1}{4\times 5}}{\frac{1}{6}}-\frac{1}{7}
Multiply \frac{1}{4} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{\frac{1}{20}}{\frac{1}{6}}-\frac{1}{7}
Do the multiplications in the fraction \frac{1\times 1}{4\times 5}.
\frac{1}{2}+\frac{1}{20}\times 6-\frac{1}{7}
Divide \frac{1}{20} by \frac{1}{6} by multiplying \frac{1}{20} by the reciprocal of \frac{1}{6}.
\frac{1}{2}+\frac{6}{20}-\frac{1}{7}
Multiply \frac{1}{20} and 6 to get \frac{6}{20}.
\frac{1}{2}+\frac{3}{10}-\frac{1}{7}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{5}{10}+\frac{3}{10}-\frac{1}{7}
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{3}{10} to fractions with denominator 10.
\frac{5+3}{10}-\frac{1}{7}
Since \frac{5}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{8}{10}-\frac{1}{7}
Add 5 and 3 to get 8.
\frac{4}{5}-\frac{1}{7}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{28}{35}-\frac{5}{35}
Least common multiple of 5 and 7 is 35. Convert \frac{4}{5} and \frac{1}{7} to fractions with denominator 35.
\frac{28-5}{35}
Since \frac{28}{35} and \frac{5}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{35}
Subtract 5 from 28 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}