Solve for x
x=8
x=0
Graph
Share
Copied to clipboard
x\left(\frac{1}{2}x-4\right)=0
Factor out x.
x=0 x=8
To find equation solutions, solve x=0 and \frac{x}{2}-4=0.
\frac{1}{2}x^{2}-4x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\times \frac{1}{2}}
Take the square root of \left(-4\right)^{2}.
x=\frac{4±4}{2\times \frac{1}{2}}
The opposite of -4 is 4.
x=\frac{4±4}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{8}{1}
Now solve the equation x=\frac{4±4}{1} when ± is plus. Add 4 to 4.
x=8
Divide 8 by 1.
x=\frac{0}{1}
Now solve the equation x=\frac{4±4}{1} when ± is minus. Subtract 4 from 4.
x=0
Divide 0 by 1.
x=8 x=0
The equation is now solved.
\frac{1}{2}x^{2}-4x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-4x}{\frac{1}{2}}=\frac{0}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{4}{\frac{1}{2}}\right)x=\frac{0}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-8x=\frac{0}{\frac{1}{2}}
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
x^{2}-8x=0
Divide 0 by \frac{1}{2} by multiplying 0 by the reciprocal of \frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=16
Square -4.
\left(x-4\right)^{2}=16
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-4=4 x-4=-4
Simplify.
x=8 x=0
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}