Solve for x (complex solution)
x=-2+\sqrt{6}i\approx -2+2.449489743i
x=-\sqrt{6}i-2\approx -2-2.449489743i
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}+2x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\times 5}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{1}{2}\times 5}}{2\times \frac{1}{2}}
Square 2.
x=\frac{-2±\sqrt{4-2\times 5}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-2±\sqrt{4-10}}{2\times \frac{1}{2}}
Multiply -2 times 5.
x=\frac{-2±\sqrt{-6}}{2\times \frac{1}{2}}
Add 4 to -10.
x=\frac{-2±\sqrt{6}i}{2\times \frac{1}{2}}
Take the square root of -6.
x=\frac{-2±\sqrt{6}i}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{-2+\sqrt{6}i}{1}
Now solve the equation x=\frac{-2±\sqrt{6}i}{1} when ± is plus. Add -2 to i\sqrt{6}.
x=-2+\sqrt{6}i
Divide -2+i\sqrt{6} by 1.
x=\frac{-\sqrt{6}i-2}{1}
Now solve the equation x=\frac{-2±\sqrt{6}i}{1} when ± is minus. Subtract i\sqrt{6} from -2.
x=-\sqrt{6}i-2
Divide -2-i\sqrt{6} by 1.
x=-2+\sqrt{6}i x=-\sqrt{6}i-2
The equation is now solved.
\frac{1}{2}x^{2}+2x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+2x+5-5=-5
Subtract 5 from both sides of the equation.
\frac{1}{2}x^{2}+2x=-5
Subtracting 5 from itself leaves 0.
\frac{\frac{1}{2}x^{2}+2x}{\frac{1}{2}}=-\frac{5}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{2}{\frac{1}{2}}x=-\frac{5}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+4x=-\frac{5}{\frac{1}{2}}
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+4x=-10
Divide -5 by \frac{1}{2} by multiplying -5 by the reciprocal of \frac{1}{2}.
x^{2}+4x+2^{2}=-10+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-10+4
Square 2.
x^{2}+4x+4=-6
Add -10 to 4.
\left(x+2\right)^{2}=-6
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-6}
Take the square root of both sides of the equation.
x+2=\sqrt{6}i x+2=-\sqrt{6}i
Simplify.
x=-2+\sqrt{6}i x=-\sqrt{6}i-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}