Solve for h
h = \frac{3371}{1960} = 1\frac{1411}{1960} \approx 1.719897959
Quiz
Linear Equation
5 problems similar to:
\frac{ 1 }{ 2 } { 5.9 }^{ 2 } - \frac{ 1 }{ 2 } 1.1 = 9.8h
Share
Copied to clipboard
\frac{1}{2}\times 34.81-\frac{1}{2}\times 1.1=9.8h
Calculate 5.9 to the power of 2 and get 34.81.
\frac{1}{2}\times \frac{3481}{100}-\frac{1}{2}\times 1.1=9.8h
Convert decimal number 34.81 to fraction \frac{3481}{100}.
\frac{1\times 3481}{2\times 100}-\frac{1}{2}\times 1.1=9.8h
Multiply \frac{1}{2} times \frac{3481}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{3481}{200}-\frac{1}{2}\times 1.1=9.8h
Do the multiplications in the fraction \frac{1\times 3481}{2\times 100}.
\frac{3481}{200}-\frac{1}{2}\times \frac{11}{10}=9.8h
Convert decimal number 1.1 to fraction \frac{11}{10}.
\frac{3481}{200}-\frac{1\times 11}{2\times 10}=9.8h
Multiply \frac{1}{2} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{3481}{200}-\frac{11}{20}=9.8h
Do the multiplications in the fraction \frac{1\times 11}{2\times 10}.
\frac{3481}{200}-\frac{110}{200}=9.8h
Least common multiple of 200 and 20 is 200. Convert \frac{3481}{200} and \frac{11}{20} to fractions with denominator 200.
\frac{3481-110}{200}=9.8h
Since \frac{3481}{200} and \frac{110}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{3371}{200}=9.8h
Subtract 110 from 3481 to get 3371.
9.8h=\frac{3371}{200}
Swap sides so that all variable terms are on the left hand side.
h=\frac{\frac{3371}{200}}{9.8}
Divide both sides by 9.8.
h=\frac{3371}{200\times 9.8}
Express \frac{\frac{3371}{200}}{9.8} as a single fraction.
h=\frac{3371}{1960}
Multiply 200 and 9.8 to get 1960.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}