Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\frac{1}{2}\left(x^{2}-2x+1\right)=\left(x-1\right)\left(x+1\right)+\frac{15}{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x^{2}-x+\frac{1}{2}=\left(x-1\right)\left(x+1\right)+\frac{15}{8}
Use the distributive property to multiply \frac{1}{2} by x^{2}-2x+1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}-1+\frac{15}{8}
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}+\frac{7}{8}
Add -1 and \frac{15}{8} to get \frac{7}{8}.
\frac{1}{2}x^{2}-x+\frac{1}{2}-x^{2}=\frac{7}{8}
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}-x+\frac{1}{2}=\frac{7}{8}
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}-x+\frac{1}{2}-\frac{7}{8}=0
Subtract \frac{7}{8} from both sides.
-\frac{1}{2}x^{2}-x-\frac{3}{8}=0
Subtract \frac{7}{8} from \frac{1}{2} to get -\frac{3}{8}.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\left(-\frac{3}{8}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -1 for b, and -\frac{3}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+2\left(-\frac{3}{8}\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1-\frac{3}{4}}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -\frac{3}{8}.
x=\frac{-\left(-1\right)±\sqrt{\frac{1}{4}}}{2\left(-\frac{1}{2}\right)}
Add 1 to -\frac{3}{4}.
x=\frac{-\left(-1\right)±\frac{1}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{1}{4}.
x=\frac{1±\frac{1}{2}}{2\left(-\frac{1}{2}\right)}
The opposite of -1 is 1.
x=\frac{1±\frac{1}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\frac{3}{2}}{-1}
Now solve the equation x=\frac{1±\frac{1}{2}}{-1} when ± is plus. Add 1 to \frac{1}{2}.
x=-\frac{3}{2}
Divide \frac{3}{2} by -1.
x=\frac{\frac{1}{2}}{-1}
Now solve the equation x=\frac{1±\frac{1}{2}}{-1} when ± is minus. Subtract \frac{1}{2} from 1.
x=-\frac{1}{2}
Divide \frac{1}{2} by -1.
x=-\frac{3}{2} x=-\frac{1}{2}
The equation is now solved.
\frac{1}{2}\left(x^{2}-2x+1\right)=\left(x-1\right)\left(x+1\right)+\frac{15}{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x^{2}-x+\frac{1}{2}=\left(x-1\right)\left(x+1\right)+\frac{15}{8}
Use the distributive property to multiply \frac{1}{2} by x^{2}-2x+1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}-1+\frac{15}{8}
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}+\frac{7}{8}
Add -1 and \frac{15}{8} to get \frac{7}{8}.
\frac{1}{2}x^{2}-x+\frac{1}{2}-x^{2}=\frac{7}{8}
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}-x+\frac{1}{2}=\frac{7}{8}
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}-x=\frac{7}{8}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{2}x^{2}-x=\frac{3}{8}
Subtract \frac{1}{2} from \frac{7}{8} to get \frac{3}{8}.
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=\frac{\frac{3}{8}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=\frac{\frac{3}{8}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+2x=\frac{\frac{3}{8}}{-\frac{1}{2}}
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x^{2}+2x=-\frac{3}{4}
Divide \frac{3}{8} by -\frac{1}{2} by multiplying \frac{3}{8} by the reciprocal of -\frac{1}{2}.
x^{2}+2x+1^{2}=-\frac{3}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{3}{4}+1
Square 1.
x^{2}+2x+1=\frac{1}{4}
Add -\frac{3}{4} to 1.
\left(x+1\right)^{2}=\frac{1}{4}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+1=\frac{1}{2} x+1=-\frac{1}{2}
Simplify.
x=-\frac{1}{2} x=-\frac{3}{2}
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}