Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\left(3+4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(3+4\times 3-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
The square of \sqrt{3} is 3.
\frac{1}{2}\left(3+12-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Multiply 4 and 3 to get 12.
\frac{1}{2}\left(3+16-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Add 12 and 4 to get 16.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Add 3 and 16 to get 19.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4\right)^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(19-8\sqrt{3}+3-4\sqrt{3}+4\right)^{1}
The square of \sqrt{3} is 3.
\frac{1}{2}\left(19-8\sqrt{3}+7-4\sqrt{3}\right)^{1}
Add 3 and 4 to get 7.
\frac{1}{2}\left(26-8\sqrt{3}-4\sqrt{3}\right)^{1}
Add 19 and 7 to get 26.
\frac{1}{2}\left(26-12\sqrt{3}\right)^{1}
Combine -8\sqrt{3} and -4\sqrt{3} to get -12\sqrt{3}.
\frac{1}{2}\left(26-12\sqrt{3}\right)
Calculate 26-12\sqrt{3} to the power of 1 and get 26-12\sqrt{3}.
13-6\sqrt{3}
Use the distributive property to multiply \frac{1}{2} by 26-12\sqrt{3}.
\frac{1}{2}\left(3+4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(3+4\times 3-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
The square of \sqrt{3} is 3.
\frac{1}{2}\left(3+12-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Multiply 4 and 3 to get 12.
\frac{1}{2}\left(3+16-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Add 12 and 4 to get 16.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Add 3 and 16 to get 19.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4\right)^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(19-8\sqrt{3}+3-4\sqrt{3}+4\right)^{1}
The square of \sqrt{3} is 3.
\frac{1}{2}\left(19-8\sqrt{3}+7-4\sqrt{3}\right)^{1}
Add 3 and 4 to get 7.
\frac{1}{2}\left(26-8\sqrt{3}-4\sqrt{3}\right)^{1}
Add 19 and 7 to get 26.
\frac{1}{2}\left(26-12\sqrt{3}\right)^{1}
Combine -8\sqrt{3} and -4\sqrt{3} to get -12\sqrt{3}.
\frac{1}{2}\left(26-12\sqrt{3}\right)
Calculate 26-12\sqrt{3} to the power of 1 and get 26-12\sqrt{3}.
13-6\sqrt{3}
Use the distributive property to multiply \frac{1}{2} by 26-12\sqrt{3}.