Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{1}{2}\left(2+\frac{9\sqrt{10}}{2}\right)\times \frac{9\sqrt{2}}{2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
Multiply \frac{9\sqrt{2}}{2} and \frac{9\sqrt{2}}{2} to get \left(\frac{9\sqrt{2}}{2}\right)^{2}.
\frac{1}{2}\left(\frac{2\times 2}{2}+\frac{9\sqrt{10}}{2}\right)\times \frac{9\sqrt{2}}{2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
\frac{1}{2}\times \frac{2\times 2+9\sqrt{10}}{2}\times \frac{9\sqrt{2}}{2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
Since \frac{2\times 2}{2} and \frac{9\sqrt{10}}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}\times \frac{4+9\sqrt{10}}{2}\times \frac{9\sqrt{2}}{2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
Do the multiplications in 2\times 2+9\sqrt{10}.
\frac{4+9\sqrt{10}}{2\times 2}\times \frac{9\sqrt{2}}{2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
Multiply \frac{1}{2} times \frac{4+9\sqrt{10}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{1}{2}\times \left(\frac{9\sqrt{2}}{2}\right)^{2}
Multiply \frac{4+9\sqrt{10}}{2\times 2} times \frac{9\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{1}{2}\times \frac{\left(9\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{9\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{\left(9\sqrt{2}\right)^{2}}{2\times 2^{2}}
Multiply \frac{1}{2} times \frac{\left(9\sqrt{2}\right)^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{\left(9\sqrt{2}\right)^{2}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{9^{2}\left(\sqrt{2}\right)^{2}}{2^{3}}
Expand \left(9\sqrt{2}\right)^{2}.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{81\left(\sqrt{2}\right)^{2}}{2^{3}}
Calculate 9 to the power of 2 and get 81.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{81\times 2}{2^{3}}
The square of \sqrt{2} is 2.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{162}{2^{3}}
Multiply 81 and 2 to get 162.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{162}{8}
Calculate 2 to the power of 3 and get 8.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{2\times 2\times 2}-\frac{81}{4}
Reduce the fraction \frac{162}{8} to lowest terms by extracting and canceling out 2.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{8}-\frac{81\times 2}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2\times 2 and 4 is 8. Multiply \frac{81}{4} times \frac{2}{2}.
\frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}-81\times 2}{8}
Since \frac{\left(4+9\sqrt{10}\right)\times 9\sqrt{2}}{8} and \frac{81\times 2}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{36\sqrt{2}+162\sqrt{5}-162}{8}
Do the multiplications in \left(4+9\sqrt{10}\right)\times 9\sqrt{2}-81\times 2.