Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times \frac{98}{60}x^{2}=100
Expand \frac{9.8}{6} by multiplying both numerator and the denominator by 10.
\frac{1}{2}\times \frac{49}{30}x^{2}=100
Reduce the fraction \frac{98}{60} to lowest terms by extracting and canceling out 2.
\frac{49}{60}x^{2}=100
Multiply \frac{1}{2} and \frac{49}{30} to get \frac{49}{60}.
x^{2}=100\times \frac{60}{49}
Multiply both sides by \frac{60}{49}, the reciprocal of \frac{49}{60}.
x^{2}=\frac{6000}{49}
Multiply 100 and \frac{60}{49} to get \frac{6000}{49}.
x=\frac{20\sqrt{15}}{7} x=-\frac{20\sqrt{15}}{7}
Take the square root of both sides of the equation.
\frac{1}{2}\times \frac{98}{60}x^{2}=100
Expand \frac{9.8}{6} by multiplying both numerator and the denominator by 10.
\frac{1}{2}\times \frac{49}{30}x^{2}=100
Reduce the fraction \frac{98}{60} to lowest terms by extracting and canceling out 2.
\frac{49}{60}x^{2}=100
Multiply \frac{1}{2} and \frac{49}{30} to get \frac{49}{60}.
\frac{49}{60}x^{2}-100=0
Subtract 100 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{49}{60}\left(-100\right)}}{2\times \frac{49}{60}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{49}{60} for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{49}{60}\left(-100\right)}}{2\times \frac{49}{60}}
Square 0.
x=\frac{0±\sqrt{-\frac{49}{15}\left(-100\right)}}{2\times \frac{49}{60}}
Multiply -4 times \frac{49}{60}.
x=\frac{0±\sqrt{\frac{980}{3}}}{2\times \frac{49}{60}}
Multiply -\frac{49}{15} times -100.
x=\frac{0±\frac{14\sqrt{15}}{3}}{2\times \frac{49}{60}}
Take the square root of \frac{980}{3}.
x=\frac{0±\frac{14\sqrt{15}}{3}}{\frac{49}{30}}
Multiply 2 times \frac{49}{60}.
x=\frac{20\sqrt{15}}{7}
Now solve the equation x=\frac{0±\frac{14\sqrt{15}}{3}}{\frac{49}{30}} when ± is plus.
x=-\frac{20\sqrt{15}}{7}
Now solve the equation x=\frac{0±\frac{14\sqrt{15}}{3}}{\frac{49}{30}} when ± is minus.
x=\frac{20\sqrt{15}}{7} x=-\frac{20\sqrt{15}}{7}
The equation is now solved.