Solve for x
x=23
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\left(-1\right)+2=\frac{1}{3}\left(2x-1\right)-2
Use the distributive property to multiply \frac{1}{2} by x-1.
\frac{1}{2}x-\frac{1}{2}+2=\frac{1}{3}\left(2x-1\right)-2
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}+\frac{4}{2}=\frac{1}{3}\left(2x-1\right)-2
Convert 2 to fraction \frac{4}{2}.
\frac{1}{2}x+\frac{-1+4}{2}=\frac{1}{3}\left(2x-1\right)-2
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}x+\frac{3}{2}=\frac{1}{3}\left(2x-1\right)-2
Add -1 and 4 to get 3.
\frac{1}{2}x+\frac{3}{2}=\frac{1}{3}\times 2x+\frac{1}{3}\left(-1\right)-2
Use the distributive property to multiply \frac{1}{3} by 2x-1.
\frac{1}{2}x+\frac{3}{2}=\frac{2}{3}x+\frac{1}{3}\left(-1\right)-2
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}x+\frac{3}{2}=\frac{2}{3}x-\frac{1}{3}-2
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{1}{2}x+\frac{3}{2}=\frac{2}{3}x-\frac{1}{3}-\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{1}{2}x+\frac{3}{2}=\frac{2}{3}x+\frac{-1-6}{3}
Since -\frac{1}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x+\frac{3}{2}=\frac{2}{3}x-\frac{7}{3}
Subtract 6 from -1 to get -7.
\frac{1}{2}x+\frac{3}{2}-\frac{2}{3}x=-\frac{7}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{1}{6}x+\frac{3}{2}=-\frac{7}{3}
Combine \frac{1}{2}x and -\frac{2}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x=-\frac{7}{3}-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
-\frac{1}{6}x=-\frac{14}{6}-\frac{9}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{7}{3} and \frac{3}{2} to fractions with denominator 6.
-\frac{1}{6}x=\frac{-14-9}{6}
Since -\frac{14}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}x=-\frac{23}{6}
Subtract 9 from -14 to get -23.
x=-\frac{23}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
x=\frac{-23\left(-6\right)}{6}
Express -\frac{23}{6}\left(-6\right) as a single fraction.
x=\frac{138}{6}
Multiply -23 and -6 to get 138.
x=23
Divide 138 by 6 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}