Solve for x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
\frac{1}{2}\left(x-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)=\frac{2}{3}\left(x-1\right)
Use the distributive property to multiply -\frac{1}{2} by x-1.
\frac{1}{2}\left(x-\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
\frac{1}{2}\left(\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
\frac{1}{2}\times \frac{1}{2}x+\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Use the distributive property to multiply \frac{1}{2} by \frac{1}{2}x+\frac{1}{2}.
\frac{1\times 1}{2\times 2}x+\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{1}{4}x+\frac{1\times 1}{2\times 2}=\frac{2}{3}\left(x-1\right)
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{1}{4}=\frac{2}{3}\left(x-1\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{1}{4}x+\frac{1}{4}=\frac{2}{3}x+\frac{2}{3}\left(-1\right)
Use the distributive property to multiply \frac{2}{3} by x-1.
\frac{1}{4}x+\frac{1}{4}=\frac{2}{3}x-\frac{2}{3}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{1}{4}x+\frac{1}{4}-\frac{2}{3}x=-\frac{2}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{5}{12}x+\frac{1}{4}=-\frac{2}{3}
Combine \frac{1}{4}x and -\frac{2}{3}x to get -\frac{5}{12}x.
-\frac{5}{12}x=-\frac{2}{3}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-\frac{5}{12}x=-\frac{8}{12}-\frac{3}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{2}{3} and \frac{1}{4} to fractions with denominator 12.
-\frac{5}{12}x=\frac{-8-3}{12}
Since -\frac{8}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}x=-\frac{11}{12}
Subtract 3 from -8 to get -11.
x=-\frac{11}{12}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{-11\left(-12\right)}{12\times 5}
Multiply -\frac{11}{12} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{132}{60}
Do the multiplications in the fraction \frac{-11\left(-12\right)}{12\times 5}.
x=\frac{11}{5}
Reduce the fraction \frac{132}{60} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}