Solve for b
b=-\frac{3h}{4}+18
Solve for h
h=-\frac{4b}{3}+24
Share
Copied to clipboard
\left(\frac{1}{2}b+\frac{3}{2}\right)\left(h+4\right)-\frac{1}{2}bh=42
Use the distributive property to multiply \frac{1}{2} by b+3.
\frac{1}{2}bh+2b+\frac{3}{2}h+6-\frac{1}{2}bh=42
Use the distributive property to multiply \frac{1}{2}b+\frac{3}{2} by h+4.
2b+\frac{3}{2}h+6=42
Combine \frac{1}{2}bh and -\frac{1}{2}bh to get 0.
2b+6=42-\frac{3}{2}h
Subtract \frac{3}{2}h from both sides.
2b=42-\frac{3}{2}h-6
Subtract 6 from both sides.
2b=36-\frac{3}{2}h
Subtract 6 from 42 to get 36.
2b=-\frac{3h}{2}+36
The equation is in standard form.
\frac{2b}{2}=\frac{-\frac{3h}{2}+36}{2}
Divide both sides by 2.
b=\frac{-\frac{3h}{2}+36}{2}
Dividing by 2 undoes the multiplication by 2.
b=-\frac{3h}{4}+18
Divide 36-\frac{3h}{2} by 2.
\left(\frac{1}{2}b+\frac{3}{2}\right)\left(h+4\right)-\frac{1}{2}bh=42
Use the distributive property to multiply \frac{1}{2} by b+3.
\frac{1}{2}bh+2b+\frac{3}{2}h+6-\frac{1}{2}bh=42
Use the distributive property to multiply \frac{1}{2}b+\frac{3}{2} by h+4.
2b+\frac{3}{2}h+6=42
Combine \frac{1}{2}bh and -\frac{1}{2}bh to get 0.
\frac{3}{2}h+6=42-2b
Subtract 2b from both sides.
\frac{3}{2}h=42-2b-6
Subtract 6 from both sides.
\frac{3}{2}h=36-2b
Subtract 6 from 42 to get 36.
\frac{\frac{3}{2}h}{\frac{3}{2}}=\frac{36-2b}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
h=\frac{36-2b}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
h=-\frac{4b}{3}+24
Divide 36-2b by \frac{3}{2} by multiplying 36-2b by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}