Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\frac{1}{2}\times 3x+\frac{1}{2}\left(-\frac{1}{2}\right)-\frac{1}{3}\left(4x-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Use the distributive property to multiply \frac{1}{2} by 3x-\frac{1}{2}.
\frac{3}{2}x+\frac{1}{2}\left(-\frac{1}{2}\right)-\frac{1}{3}\left(4x-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{1\left(-1\right)}{2\times 2}-\frac{1}{3}\left(4x-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x+\frac{-1}{4}-\frac{1}{3}\left(4x-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{2}x-\frac{1}{4}-\frac{1}{3}\left(4x-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{2}x-\frac{1}{4}-\frac{1}{3}\times 4x-\frac{1}{3}\left(-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Use the distributive property to multiply -\frac{1}{3} by 4x-\frac{1}{3}.
\frac{3}{2}x-\frac{1}{4}+\frac{-4}{3}x-\frac{1}{3}\left(-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
\frac{3}{2}x-\frac{1}{4}-\frac{4}{3}x-\frac{1}{3}\left(-\frac{1}{3}\right)=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{3}{2}x-\frac{1}{4}-\frac{4}{3}x+\frac{-\left(-1\right)}{3\times 3}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Multiply -\frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x-\frac{1}{4}-\frac{4}{3}x+\frac{1}{9}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 3}.
\frac{1}{6}x-\frac{1}{4}+\frac{1}{9}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Combine \frac{3}{2}x and -\frac{4}{3}x to get \frac{1}{6}x.
\frac{1}{6}x-\frac{9}{36}+\frac{4}{36}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Least common multiple of 4 and 9 is 36. Convert -\frac{1}{4} and \frac{1}{9} to fractions with denominator 36.
\frac{1}{6}x+\frac{-9+4}{36}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Since -\frac{9}{36} and \frac{4}{36} have the same denominator, add them by adding their numerators.
\frac{1}{6}x-\frac{5}{36}=\frac{1}{4}\left(6x-5\right)-\frac{2}{3}
Add -9 and 4 to get -5.
\frac{1}{6}x-\frac{5}{36}=\frac{1}{4}\times 6x+\frac{1}{4}\left(-5\right)-\frac{2}{3}
Use the distributive property to multiply \frac{1}{4} by 6x-5.
\frac{1}{6}x-\frac{5}{36}=\frac{6}{4}x+\frac{1}{4}\left(-5\right)-\frac{2}{3}
Multiply \frac{1}{4} and 6 to get \frac{6}{4}.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x+\frac{1}{4}\left(-5\right)-\frac{2}{3}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x+\frac{-5}{4}-\frac{2}{3}
Multiply \frac{1}{4} and -5 to get \frac{-5}{4}.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x-\frac{5}{4}-\frac{2}{3}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x-\frac{15}{12}-\frac{8}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{5}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x+\frac{-15-8}{12}
Since -\frac{15}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}x-\frac{5}{36}=\frac{3}{2}x-\frac{23}{12}
Subtract 8 from -15 to get -23.
\frac{1}{6}x-\frac{5}{36}-\frac{3}{2}x=-\frac{23}{12}
Subtract \frac{3}{2}x from both sides.
-\frac{4}{3}x-\frac{5}{36}=-\frac{23}{12}
Combine \frac{1}{6}x and -\frac{3}{2}x to get -\frac{4}{3}x.
-\frac{4}{3}x=-\frac{23}{12}+\frac{5}{36}
Add \frac{5}{36} to both sides.
-\frac{4}{3}x=-\frac{69}{36}+\frac{5}{36}
Least common multiple of 12 and 36 is 36. Convert -\frac{23}{12} and \frac{5}{36} to fractions with denominator 36.
-\frac{4}{3}x=\frac{-69+5}{36}
Since -\frac{69}{36} and \frac{5}{36} have the same denominator, add them by adding their numerators.
-\frac{4}{3}x=\frac{-64}{36}
Add -69 and 5 to get -64.
-\frac{4}{3}x=-\frac{16}{9}
Reduce the fraction \frac{-64}{36} to lowest terms by extracting and canceling out 4.
x=-\frac{16}{9}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
x=\frac{-16\left(-3\right)}{9\times 4}
Multiply -\frac{16}{9} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x=\frac{48}{36}
Do the multiplications in the fraction \frac{-16\left(-3\right)}{9\times 4}.
x=\frac{4}{3}
Reduce the fraction \frac{48}{36} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}