Solve for k
k=2
k=-\frac{2}{3}\approx -0.666666667
Share
Copied to clipboard
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply both sides of the equation by 2.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Use the distributive property to multiply 1 by 1-\frac{k}{2}.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Apply the distributive property by multiplying each term of 1-\frac{k}{2} by each term of 2-k.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Express 2\left(-\frac{k}{2}\right) as a single fraction.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Cancel out 2 and 2.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Combine -k and -k to get -2k.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply -1 and -1 to get 1.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Express \frac{k}{2}k as a single fraction.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply k and k to get k^{2}.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
Use the distributive property to multiply 2 by k+2.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
Apply the distributive property by multiplying each term of 2k+4 by each term of 1-\frac{k}{2}.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
Express 2\left(-\frac{k}{2}\right) as a single fraction.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
Cancel out 2 and 2.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
Cancel out 2, the greatest common factor in 4 and 2.
2-2k+\frac{k^{2}}{2}=-kk+4
Combine 2k and -2k to get 0.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
Multiply k and k to get k^{2}.
2-2k+\frac{k^{2}}{2}+k^{2}=4
Add k^{2} to both sides.
2-2k+\frac{3}{2}k^{2}=4
Combine \frac{k^{2}}{2} and k^{2} to get \frac{3}{2}k^{2}.
2-2k+\frac{3}{2}k^{2}-4=0
Subtract 4 from both sides.
-2-2k+\frac{3}{2}k^{2}=0
Subtract 4 from 2 to get -2.
\frac{3}{2}k^{2}-2k-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
Square -2.
k=\frac{-\left(-2\right)±\sqrt{4-6\left(-2\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
k=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times \frac{3}{2}}
Multiply -6 times -2.
k=\frac{-\left(-2\right)±\sqrt{16}}{2\times \frac{3}{2}}
Add 4 to 12.
k=\frac{-\left(-2\right)±4}{2\times \frac{3}{2}}
Take the square root of 16.
k=\frac{2±4}{2\times \frac{3}{2}}
The opposite of -2 is 2.
k=\frac{2±4}{3}
Multiply 2 times \frac{3}{2}.
k=\frac{6}{3}
Now solve the equation k=\frac{2±4}{3} when ± is plus. Add 2 to 4.
k=2
Divide 6 by 3.
k=-\frac{2}{3}
Now solve the equation k=\frac{2±4}{3} when ± is minus. Subtract 4 from 2.
k=2 k=-\frac{2}{3}
The equation is now solved.
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply both sides of the equation by 2.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Use the distributive property to multiply 1 by 1-\frac{k}{2}.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Apply the distributive property by multiplying each term of 1-\frac{k}{2} by each term of 2-k.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Express 2\left(-\frac{k}{2}\right) as a single fraction.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Cancel out 2 and 2.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Combine -k and -k to get -2k.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply -1 and -1 to get 1.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Express \frac{k}{2}k as a single fraction.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Multiply k and k to get k^{2}.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
Use the distributive property to multiply 2 by k+2.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
Apply the distributive property by multiplying each term of 2k+4 by each term of 1-\frac{k}{2}.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
Express 2\left(-\frac{k}{2}\right) as a single fraction.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
Cancel out 2 and 2.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
Cancel out 2, the greatest common factor in 4 and 2.
2-2k+\frac{k^{2}}{2}=-kk+4
Combine 2k and -2k to get 0.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
Multiply k and k to get k^{2}.
2-2k+\frac{k^{2}}{2}+k^{2}=4
Add k^{2} to both sides.
2-2k+\frac{3}{2}k^{2}=4
Combine \frac{k^{2}}{2} and k^{2} to get \frac{3}{2}k^{2}.
-2k+\frac{3}{2}k^{2}=4-2
Subtract 2 from both sides.
-2k+\frac{3}{2}k^{2}=2
Subtract 2 from 4 to get 2.
\frac{3}{2}k^{2}-2k=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{2}k^{2}-2k}{\frac{3}{2}}=\frac{2}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
k^{2}+\left(-\frac{2}{\frac{3}{2}}\right)k=\frac{2}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
k^{2}-\frac{4}{3}k=\frac{2}{\frac{3}{2}}
Divide -2 by \frac{3}{2} by multiplying -2 by the reciprocal of \frac{3}{2}.
k^{2}-\frac{4}{3}k=\frac{4}{3}
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
k^{2}-\frac{4}{3}k+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{16}{9}
Add \frac{4}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k-\frac{2}{3}\right)^{2}=\frac{16}{9}
Factor k^{2}-\frac{4}{3}k+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
k-\frac{2}{3}=\frac{4}{3} k-\frac{2}{3}=-\frac{4}{3}
Simplify.
k=2 k=-\frac{2}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}