Solve for n
n=12
Share
Copied to clipboard
\frac{\frac{1}{16}}{128}=\left(\frac{1}{2}\right)^{n-1}
Divide both sides by 128.
\frac{1}{16\times 128}=\left(\frac{1}{2}\right)^{n-1}
Express \frac{\frac{1}{16}}{128} as a single fraction.
\frac{1}{2048}=\left(\frac{1}{2}\right)^{n-1}
Multiply 16 and 128 to get 2048.
\left(\frac{1}{2}\right)^{n-1}=\frac{1}{2048}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{1}{2}\right)^{n-1})=\log(\frac{1}{2048})
Take the logarithm of both sides of the equation.
\left(n-1\right)\log(\frac{1}{2})=\log(\frac{1}{2048})
The logarithm of a number raised to a power is the power times the logarithm of the number.
n-1=\frac{\log(\frac{1}{2048})}{\log(\frac{1}{2})}
Divide both sides by \log(\frac{1}{2}).
n-1=\log_{\frac{1}{2}}\left(\frac{1}{2048}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=11-\left(-1\right)
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}