Solve for x
x=\sqrt{310}+35\approx 52.606816862
x=35-\sqrt{310}\approx 17.393183138
Graph
Share
Copied to clipboard
\frac{1}{125}x^{2}-\frac{2}{25}x-\frac{24}{5}-0.48x+13.92=1.8
Use the distributive property to multiply -0.48 by x-29.
\frac{1}{125}x^{2}-\frac{14}{25}x-\frac{24}{5}+13.92=1.8
Combine -\frac{2}{25}x and -0.48x to get -\frac{14}{25}x.
\frac{1}{125}x^{2}-\frac{14}{25}x+\frac{228}{25}=1.8
Add -\frac{24}{5} and 13.92 to get \frac{228}{25}.
\frac{1}{125}x^{2}-\frac{14}{25}x+\frac{228}{25}-1.8=0
Subtract 1.8 from both sides.
\frac{1}{125}x^{2}-\frac{14}{25}x+\frac{183}{25}=0
Subtract 1.8 from \frac{228}{25} to get \frac{183}{25}.
x=\frac{-\left(-\frac{14}{25}\right)±\sqrt{\left(-\frac{14}{25}\right)^{2}-4\times \frac{1}{125}\times \frac{183}{25}}}{2\times \frac{1}{125}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{125} for a, -\frac{14}{25} for b, and \frac{183}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{14}{25}\right)±\sqrt{\frac{196}{625}-4\times \frac{1}{125}\times \frac{183}{25}}}{2\times \frac{1}{125}}
Square -\frac{14}{25} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{14}{25}\right)±\sqrt{\frac{196}{625}-\frac{4}{125}\times \frac{183}{25}}}{2\times \frac{1}{125}}
Multiply -4 times \frac{1}{125}.
x=\frac{-\left(-\frac{14}{25}\right)±\sqrt{\frac{196}{625}-\frac{732}{3125}}}{2\times \frac{1}{125}}
Multiply -\frac{4}{125} times \frac{183}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{14}{25}\right)±\sqrt{\frac{248}{3125}}}{2\times \frac{1}{125}}
Add \frac{196}{625} to -\frac{732}{3125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{14}{25}\right)±\frac{2\sqrt{310}}{125}}{2\times \frac{1}{125}}
Take the square root of \frac{248}{3125}.
x=\frac{\frac{14}{25}±\frac{2\sqrt{310}}{125}}{2\times \frac{1}{125}}
The opposite of -\frac{14}{25} is \frac{14}{25}.
x=\frac{\frac{14}{25}±\frac{2\sqrt{310}}{125}}{\frac{2}{125}}
Multiply 2 times \frac{1}{125}.
x=\frac{\frac{2\sqrt{310}}{125}+\frac{14}{25}}{\frac{2}{125}}
Now solve the equation x=\frac{\frac{14}{25}±\frac{2\sqrt{310}}{125}}{\frac{2}{125}} when ± is plus. Add \frac{14}{25} to \frac{2\sqrt{310}}{125}.
x=\sqrt{310}+35
Divide \frac{14}{25}+\frac{2\sqrt{310}}{125} by \frac{2}{125} by multiplying \frac{14}{25}+\frac{2\sqrt{310}}{125} by the reciprocal of \frac{2}{125}.
x=\frac{-\frac{2\sqrt{310}}{125}+\frac{14}{25}}{\frac{2}{125}}
Now solve the equation x=\frac{\frac{14}{25}±\frac{2\sqrt{310}}{125}}{\frac{2}{125}} when ± is minus. Subtract \frac{2\sqrt{310}}{125} from \frac{14}{25}.
x=35-\sqrt{310}
Divide \frac{14}{25}-\frac{2\sqrt{310}}{125} by \frac{2}{125} by multiplying \frac{14}{25}-\frac{2\sqrt{310}}{125} by the reciprocal of \frac{2}{125}.
x=\sqrt{310}+35 x=35-\sqrt{310}
The equation is now solved.
\frac{1}{125}x^{2}-\frac{2}{25}x-\frac{24}{5}-0.48x+13.92=1.8
Use the distributive property to multiply -0.48 by x-29.
\frac{1}{125}x^{2}-\frac{14}{25}x-\frac{24}{5}+13.92=1.8
Combine -\frac{2}{25}x and -0.48x to get -\frac{14}{25}x.
\frac{1}{125}x^{2}-\frac{14}{25}x+\frac{228}{25}=1.8
Add -\frac{24}{5} and 13.92 to get \frac{228}{25}.
\frac{1}{125}x^{2}-\frac{14}{25}x=1.8-\frac{228}{25}
Subtract \frac{228}{25} from both sides.
\frac{1}{125}x^{2}-\frac{14}{25}x=-\frac{183}{25}
Subtract \frac{228}{25} from 1.8 to get -\frac{183}{25}.
\frac{\frac{1}{125}x^{2}-\frac{14}{25}x}{\frac{1}{125}}=-\frac{\frac{183}{25}}{\frac{1}{125}}
Multiply both sides by 125.
x^{2}+\left(-\frac{\frac{14}{25}}{\frac{1}{125}}\right)x=-\frac{\frac{183}{25}}{\frac{1}{125}}
Dividing by \frac{1}{125} undoes the multiplication by \frac{1}{125}.
x^{2}-70x=-\frac{\frac{183}{25}}{\frac{1}{125}}
Divide -\frac{14}{25} by \frac{1}{125} by multiplying -\frac{14}{25} by the reciprocal of \frac{1}{125}.
x^{2}-70x=-915
Divide -\frac{183}{25} by \frac{1}{125} by multiplying -\frac{183}{25} by the reciprocal of \frac{1}{125}.
x^{2}-70x+\left(-35\right)^{2}=-915+\left(-35\right)^{2}
Divide -70, the coefficient of the x term, by 2 to get -35. Then add the square of -35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-70x+1225=-915+1225
Square -35.
x^{2}-70x+1225=310
Add -915 to 1225.
\left(x-35\right)^{2}=310
Factor x^{2}-70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{310}
Take the square root of both sides of the equation.
x-35=\sqrt{310} x-35=-\sqrt{310}
Simplify.
x=\sqrt{310}+35 x=35-\sqrt{310}
Add 35 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}