Solve for t
t=-400
t=120
Share
Copied to clipboard
t\left(t+480\right)=100t+100t+48000
Variable t cannot be equal to any of the values -480,0 since division by zero is not defined. Multiply both sides of the equation by 100t\left(t+480\right), the least common multiple of 100,t+480,t.
t^{2}+480t=100t+100t+48000
Use the distributive property to multiply t by t+480.
t^{2}+480t=200t+48000
Combine 100t and 100t to get 200t.
t^{2}+480t-200t=48000
Subtract 200t from both sides.
t^{2}+280t=48000
Combine 480t and -200t to get 280t.
t^{2}+280t-48000=0
Subtract 48000 from both sides.
t=\frac{-280±\sqrt{280^{2}-4\left(-48000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 280 for b, and -48000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-280±\sqrt{78400-4\left(-48000\right)}}{2}
Square 280.
t=\frac{-280±\sqrt{78400+192000}}{2}
Multiply -4 times -48000.
t=\frac{-280±\sqrt{270400}}{2}
Add 78400 to 192000.
t=\frac{-280±520}{2}
Take the square root of 270400.
t=\frac{240}{2}
Now solve the equation t=\frac{-280±520}{2} when ± is plus. Add -280 to 520.
t=120
Divide 240 by 2.
t=-\frac{800}{2}
Now solve the equation t=\frac{-280±520}{2} when ± is minus. Subtract 520 from -280.
t=-400
Divide -800 by 2.
t=120 t=-400
The equation is now solved.
t\left(t+480\right)=100t+100t+48000
Variable t cannot be equal to any of the values -480,0 since division by zero is not defined. Multiply both sides of the equation by 100t\left(t+480\right), the least common multiple of 100,t+480,t.
t^{2}+480t=100t+100t+48000
Use the distributive property to multiply t by t+480.
t^{2}+480t=200t+48000
Combine 100t and 100t to get 200t.
t^{2}+480t-200t=48000
Subtract 200t from both sides.
t^{2}+280t=48000
Combine 480t and -200t to get 280t.
t^{2}+280t+140^{2}=48000+140^{2}
Divide 280, the coefficient of the x term, by 2 to get 140. Then add the square of 140 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+280t+19600=48000+19600
Square 140.
t^{2}+280t+19600=67600
Add 48000 to 19600.
\left(t+140\right)^{2}=67600
Factor t^{2}+280t+19600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+140\right)^{2}}=\sqrt{67600}
Take the square root of both sides of the equation.
t+140=260 t+140=-260
Simplify.
t=120 t=-400
Subtract 140 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}