Evaluate
\frac{1}{2018}\approx 0.00049554
Factor
\frac{1}{2 \cdot 1009} = 0.0004955401387512388
Share
Copied to clipboard
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2018}{2018}-\frac{1}{2018}}}}
Convert 1 to fraction \frac{2018}{2018}.
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2018-1}{2018}}}}
Since \frac{2018}{2018} and \frac{1}{2018} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{1-\frac{1}{1-\frac{1}{\frac{2017}{2018}}}}
Subtract 1 from 2018 to get 2017.
\frac{1}{1-\frac{1}{1-1\times \frac{2018}{2017}}}
Divide 1 by \frac{2017}{2018} by multiplying 1 by the reciprocal of \frac{2017}{2018}.
\frac{1}{1-\frac{1}{1-\frac{2018}{2017}}}
Multiply 1 and \frac{2018}{2017} to get \frac{2018}{2017}.
\frac{1}{1-\frac{1}{\frac{2017}{2017}-\frac{2018}{2017}}}
Convert 1 to fraction \frac{2017}{2017}.
\frac{1}{1-\frac{1}{\frac{2017-2018}{2017}}}
Since \frac{2017}{2017} and \frac{2018}{2017} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{1-\frac{1}{-\frac{1}{2017}}}
Subtract 2018 from 2017 to get -1.
\frac{1}{1-1\left(-2017\right)}
Divide 1 by -\frac{1}{2017} by multiplying 1 by the reciprocal of -\frac{1}{2017}.
\frac{1}{1-\left(-2017\right)}
Multiply 1 and -2017 to get -2017.
\frac{1}{1+2017}
The opposite of -2017 is 2017.
\frac{1}{2018}
Add 1 and 2017 to get 2018.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}