Evaluate
-\frac{1}{22}\approx -0.045454545
Factor
-\frac{1}{22} = -0.045454545454545456
Share
Copied to clipboard
\frac{1-3\sqrt{5}}{\left(1+3\sqrt{5}\right)\left(1-3\sqrt{5}\right)}+\frac{1}{1-3\sqrt{5}}
Rationalize the denominator of \frac{1}{1+3\sqrt{5}} by multiplying numerator and denominator by 1-3\sqrt{5}.
\frac{1-3\sqrt{5}}{1^{2}-\left(3\sqrt{5}\right)^{2}}+\frac{1}{1-3\sqrt{5}}
Consider \left(1+3\sqrt{5}\right)\left(1-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-3\sqrt{5}}{1-\left(3\sqrt{5}\right)^{2}}+\frac{1}{1-3\sqrt{5}}
Calculate 1 to the power of 2 and get 1.
\frac{1-3\sqrt{5}}{1-3^{2}\left(\sqrt{5}\right)^{2}}+\frac{1}{1-3\sqrt{5}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{1-3\sqrt{5}}{1-9\left(\sqrt{5}\right)^{2}}+\frac{1}{1-3\sqrt{5}}
Calculate 3 to the power of 2 and get 9.
\frac{1-3\sqrt{5}}{1-9\times 5}+\frac{1}{1-3\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{1-3\sqrt{5}}{1-45}+\frac{1}{1-3\sqrt{5}}
Multiply 9 and 5 to get 45.
\frac{1-3\sqrt{5}}{-44}+\frac{1}{1-3\sqrt{5}}
Subtract 45 from 1 to get -44.
\frac{-1+3\sqrt{5}}{44}+\frac{1}{1-3\sqrt{5}}
Multiply both numerator and denominator by -1.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{\left(1-3\sqrt{5}\right)\left(1+3\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{1-3\sqrt{5}} by multiplying numerator and denominator by 1+3\sqrt{5}.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1^{2}-\left(-3\sqrt{5}\right)^{2}}
Consider \left(1-3\sqrt{5}\right)\left(1+3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1-\left(-3\sqrt{5}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1-\left(-3\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-3\sqrt{5}\right)^{2}.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1-9\left(\sqrt{5}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1-9\times 5}
The square of \sqrt{5} is 5.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{1-45}
Multiply 9 and 5 to get 45.
\frac{-1+3\sqrt{5}}{44}+\frac{1+3\sqrt{5}}{-44}
Subtract 45 from 1 to get -44.
\frac{-1+3\sqrt{5}}{44}+\frac{-1-3\sqrt{5}}{44}
Multiply both numerator and denominator by -1.
\frac{-1+3\sqrt{5}-1-3\sqrt{5}}{44}
Since \frac{-1+3\sqrt{5}}{44} and \frac{-1-3\sqrt{5}}{44} have the same denominator, add them by adding their numerators.
\frac{-2}{44}
Do the calculations in -1+3\sqrt{5}-1-3\sqrt{5}.
-\frac{1}{22}
Reduce the fraction \frac{-2}{44} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}