Evaluate
\frac{13}{21}\approx 0.619047619
Factor
\frac{13}{3 \cdot 7} = 0.6190476190476191
Quiz
Arithmetic
5 problems similar to:
\frac{ 1 }{ 1+ \frac{ 1 }{ 1+ \frac{ 1 }{ 1+ \frac{ 3 }{ 5 } } } }
Share
Copied to clipboard
\frac{1}{1+\frac{1}{1+\frac{1}{\frac{5}{5}+\frac{3}{5}}}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{1+\frac{1}{1+\frac{1}{\frac{5+3}{5}}}}
Since \frac{5}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{1}{1+\frac{1}{1+\frac{1}{\frac{8}{5}}}}
Add 5 and 3 to get 8.
\frac{1}{1+\frac{1}{1+1\times \frac{5}{8}}}
Divide 1 by \frac{8}{5} by multiplying 1 by the reciprocal of \frac{8}{5}.
\frac{1}{1+\frac{1}{1+\frac{5}{8}}}
Multiply 1 and \frac{5}{8} to get \frac{5}{8}.
\frac{1}{1+\frac{1}{\frac{8}{8}+\frac{5}{8}}}
Convert 1 to fraction \frac{8}{8}.
\frac{1}{1+\frac{1}{\frac{8+5}{8}}}
Since \frac{8}{8} and \frac{5}{8} have the same denominator, add them by adding their numerators.
\frac{1}{1+\frac{1}{\frac{13}{8}}}
Add 8 and 5 to get 13.
\frac{1}{1+1\times \frac{8}{13}}
Divide 1 by \frac{13}{8} by multiplying 1 by the reciprocal of \frac{13}{8}.
\frac{1}{1+\frac{8}{13}}
Multiply 1 and \frac{8}{13} to get \frac{8}{13}.
\frac{1}{\frac{13}{13}+\frac{8}{13}}
Convert 1 to fraction \frac{13}{13}.
\frac{1}{\frac{13+8}{13}}
Since \frac{13}{13} and \frac{8}{13} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{21}{13}}
Add 13 and 8 to get 21.
1\times \frac{13}{21}
Divide 1 by \frac{21}{13} by multiplying 1 by the reciprocal of \frac{21}{13}.
\frac{13}{21}
Multiply 1 and \frac{13}{21} to get \frac{13}{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}