Evaluate
\frac{63923}{14641}\approx 4.366026911
Factor
\frac{97 \cdot 659}{11 ^ {4}} = 4\frac{5359}{14641} = 4.366026910730142
Share
Copied to clipboard
\frac{1}{1\times 1}+\frac{2}{1^{3}}+\frac{2}{1\times 1^{3}}+\frac{2}{1.1^{4}}+\frac{2}{1\times 1^{3}}+\frac{0\times 5}{1\times 1^{6}}-4
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{1}{1\times 1}+\frac{2}{1^{3}}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1\times 1^{3}}+\frac{0\times 5}{1\times 1^{6}}-4
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{1}{1\times 1}+\frac{2}{1^{3}}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1\times 1^{6}}-4
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{1}{1\times 1}+\frac{2}{1^{3}}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{1}{1}+\frac{2}{1^{3}}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Multiply 1 and 1 to get 1.
1+\frac{2}{1^{3}}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Anything divided by one gives itself.
1+\frac{2}{1}+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Calculate 1 to the power of 3 and get 1.
1+2+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Anything divided by one gives itself.
3+\frac{2}{1^{4}}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Add 1 and 2 to get 3.
3+\frac{2}{1}+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Calculate 1 to the power of 4 and get 1.
3+2+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Anything divided by one gives itself.
5+\frac{2}{1.1^{4}}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Add 3 and 2 to get 5.
5+\frac{2}{1.4641}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Calculate 1.1 to the power of 4 and get 1.4641.
5+\frac{20000}{14641}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Expand \frac{2}{1.4641} by multiplying both numerator and the denominator by 10000.
\frac{73205}{14641}+\frac{20000}{14641}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Convert 5 to fraction \frac{73205}{14641}.
\frac{73205+20000}{14641}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Since \frac{73205}{14641} and \frac{20000}{14641} have the same denominator, add them by adding their numerators.
\frac{93205}{14641}+\frac{2}{1^{4}}+\frac{0\times 5}{1^{7}}-4
Add 73205 and 20000 to get 93205.
\frac{93205}{14641}+\frac{2}{1}+\frac{0\times 5}{1^{7}}-4
Calculate 1 to the power of 4 and get 1.
\frac{93205}{14641}+2+\frac{0\times 5}{1^{7}}-4
Anything divided by one gives itself.
\frac{93205}{14641}+\frac{29282}{14641}+\frac{0\times 5}{1^{7}}-4
Convert 2 to fraction \frac{29282}{14641}.
\frac{93205+29282}{14641}+\frac{0\times 5}{1^{7}}-4
Since \frac{93205}{14641} and \frac{29282}{14641} have the same denominator, add them by adding their numerators.
\frac{122487}{14641}+\frac{0\times 5}{1^{7}}-4
Add 93205 and 29282 to get 122487.
\frac{122487}{14641}+\frac{0}{1^{7}}-4
Multiply 0 and 5 to get 0.
\frac{122487}{14641}+\frac{0}{1}-4
Calculate 1 to the power of 7 and get 1.
\frac{122487}{14641}+0-4
Anything divided by one gives itself.
\frac{122487}{14641}-4
Add \frac{122487}{14641} and 0 to get \frac{122487}{14641}.
\frac{122487}{14641}-\frac{58564}{14641}
Convert 4 to fraction \frac{58564}{14641}.
\frac{122487-58564}{14641}
Since \frac{122487}{14641} and \frac{58564}{14641} have the same denominator, subtract them by subtracting their numerators.
\frac{63923}{14641}
Subtract 58564 from 122487 to get 63923.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}