Evaluate
\frac{4095}{2048}=1.999511719
Factor
\frac{3 ^ {2} \cdot 5 \cdot 7 \cdot 13}{2 ^ {11}} = 1\frac{2047}{2048} = 1.99951171875
Share
Copied to clipboard
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Divide 1 by 1 to get 1.
\frac{2}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 2 and 1 to get 3.
\frac{6}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{6+1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{6}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 6 and 1 to get 7.
\frac{14}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{14+1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{14}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{15}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 14 and 1 to get 15.
\frac{30}{16}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 8 and 16 is 16. Convert \frac{15}{8} and \frac{1}{16} to fractions with denominator 16.
\frac{30+1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{30}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{31}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 30 and 1 to get 31.
\frac{62}{32}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 16 and 32 is 32. Convert \frac{31}{16} and \frac{1}{32} to fractions with denominator 32.
\frac{62+1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{62}{32} and \frac{1}{32} have the same denominator, add them by adding their numerators.
\frac{63}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 62 and 1 to get 63.
\frac{126}{64}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 32 and 64 is 64. Convert \frac{63}{32} and \frac{1}{64} to fractions with denominator 64.
\frac{126+1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{126}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\frac{127}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 126 and 1 to get 127.
\frac{254}{128}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 64 and 128 is 128. Convert \frac{127}{64} and \frac{1}{128} to fractions with denominator 128.
\frac{254+1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{254}{128} and \frac{1}{128} have the same denominator, add them by adding their numerators.
\frac{255}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 254 and 1 to get 255.
\frac{510}{256}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 128 and 256 is 256. Convert \frac{255}{128} and \frac{1}{256} to fractions with denominator 256.
\frac{510+1}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{510}{256} and \frac{1}{256} have the same denominator, add them by adding their numerators.
\frac{511}{256}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 510 and 1 to get 511.
\frac{1022}{512}+\frac{1}{512}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 256 and 512 is 512. Convert \frac{511}{256} and \frac{1}{512} to fractions with denominator 512.
\frac{1022+1}{512}+\frac{1}{1024}+\frac{1}{2048}
Since \frac{1022}{512} and \frac{1}{512} have the same denominator, add them by adding their numerators.
\frac{1023}{512}+\frac{1}{1024}+\frac{1}{2048}
Add 1022 and 1 to get 1023.
\frac{2046}{1024}+\frac{1}{1024}+\frac{1}{2048}
Least common multiple of 512 and 1024 is 1024. Convert \frac{1023}{512} and \frac{1}{1024} to fractions with denominator 1024.
\frac{2046+1}{1024}+\frac{1}{2048}
Since \frac{2046}{1024} and \frac{1}{1024} have the same denominator, add them by adding their numerators.
\frac{2047}{1024}+\frac{1}{2048}
Add 2046 and 1 to get 2047.
\frac{4094}{2048}+\frac{1}{2048}
Least common multiple of 1024 and 2048 is 2048. Convert \frac{2047}{1024} and \frac{1}{2048} to fractions with denominator 2048.
\frac{4094+1}{2048}
Since \frac{4094}{2048} and \frac{1}{2048} have the same denominator, add them by adding their numerators.
\frac{4095}{2048}
Add 4094 and 1 to get 4095.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}