Evaluate
\frac{625\sqrt{3}-625}{21}\approx 21.787226416
Factor
\frac{625 \sqrt{3} - 625}{21} = 21.787226415740395
Share
Copied to clipboard
\frac{100}{84}\left(25\sqrt{3}-25\right)
Expand \frac{1}{0.84} by multiplying both numerator and the denominator by 100.
\frac{25}{21}\left(25\sqrt{3}-25\right)
Reduce the fraction \frac{100}{84} to lowest terms by extracting and canceling out 4.
\frac{25}{21}\times 25\sqrt{3}+\frac{25}{21}\left(-25\right)
Use the distributive property to multiply \frac{25}{21} by 25\sqrt{3}-25.
\frac{25\times 25}{21}\sqrt{3}+\frac{25}{21}\left(-25\right)
Express \frac{25}{21}\times 25 as a single fraction.
\frac{625}{21}\sqrt{3}+\frac{25}{21}\left(-25\right)
Multiply 25 and 25 to get 625.
\frac{625}{21}\sqrt{3}+\frac{25\left(-25\right)}{21}
Express \frac{25}{21}\left(-25\right) as a single fraction.
\frac{625}{21}\sqrt{3}+\frac{-625}{21}
Multiply 25 and -25 to get -625.
\frac{625}{21}\sqrt{3}-\frac{625}{21}
Fraction \frac{-625}{21} can be rewritten as -\frac{625}{21} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}