Evaluate
\frac{2}{15}\approx 0.133333333
Factor
\frac{2}{3 \cdot 5} = 0.13333333333333333
Share
Copied to clipboard
\frac{100}{12}\times 0.41^{2}-\frac{1}{0.12}\times 0.39^{2}
Expand \frac{1}{0.12} by multiplying both numerator and the denominator by 100.
\frac{25}{3}\times 0.41^{2}-\frac{1}{0.12}\times 0.39^{2}
Reduce the fraction \frac{100}{12} to lowest terms by extracting and canceling out 4.
\frac{25}{3}\times 0.1681-\frac{1}{0.12}\times 0.39^{2}
Calculate 0.41 to the power of 2 and get 0.1681.
\frac{25}{3}\times \frac{1681}{10000}-\frac{1}{0.12}\times 0.39^{2}
Convert decimal number 0.1681 to fraction \frac{1681}{10000}.
\frac{25\times 1681}{3\times 10000}-\frac{1}{0.12}\times 0.39^{2}
Multiply \frac{25}{3} times \frac{1681}{10000} by multiplying numerator times numerator and denominator times denominator.
\frac{42025}{30000}-\frac{1}{0.12}\times 0.39^{2}
Do the multiplications in the fraction \frac{25\times 1681}{3\times 10000}.
\frac{1681}{1200}-\frac{1}{0.12}\times 0.39^{2}
Reduce the fraction \frac{42025}{30000} to lowest terms by extracting and canceling out 25.
\frac{1681}{1200}-\frac{100}{12}\times 0.39^{2}
Expand \frac{1}{0.12} by multiplying both numerator and the denominator by 100.
\frac{1681}{1200}-\frac{25}{3}\times 0.39^{2}
Reduce the fraction \frac{100}{12} to lowest terms by extracting and canceling out 4.
\frac{1681}{1200}-\frac{25}{3}\times 0.1521
Calculate 0.39 to the power of 2 and get 0.1521.
\frac{1681}{1200}-\frac{25}{3}\times \frac{1521}{10000}
Convert decimal number 0.1521 to fraction \frac{1521}{10000}.
\frac{1681}{1200}-\frac{25\times 1521}{3\times 10000}
Multiply \frac{25}{3} times \frac{1521}{10000} by multiplying numerator times numerator and denominator times denominator.
\frac{1681}{1200}-\frac{38025}{30000}
Do the multiplications in the fraction \frac{25\times 1521}{3\times 10000}.
\frac{1681}{1200}-\frac{507}{400}
Reduce the fraction \frac{38025}{30000} to lowest terms by extracting and canceling out 75.
\frac{1681}{1200}-\frac{1521}{1200}
Least common multiple of 1200 and 400 is 1200. Convert \frac{1681}{1200} and \frac{507}{400} to fractions with denominator 1200.
\frac{1681-1521}{1200}
Since \frac{1681}{1200} and \frac{1521}{1200} have the same denominator, subtract them by subtracting their numerators.
\frac{160}{1200}
Subtract 1521 from 1681 to get 160.
\frac{2}{15}
Reduce the fraction \frac{160}{1200} to lowest terms by extracting and canceling out 80.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}