Solve for x
x=\frac{5}{259}\approx 0.019305019
Graph
Share
Copied to clipboard
\frac{1000}{24}\left(7x-1\right)=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Expand \frac{1}{0.024} by multiplying both numerator and the denominator by 1000.
\frac{125}{3}\left(7x-1\right)=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Reduce the fraction \frac{1000}{24} to lowest terms by extracting and canceling out 8.
\frac{125}{3}\times 7x+\frac{125}{3}\left(-1\right)=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Use the distributive property to multiply \frac{125}{3} by 7x-1.
\frac{125\times 7}{3}x+\frac{125}{3}\left(-1\right)=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Express \frac{125}{3}\times 7 as a single fraction.
\frac{875}{3}x+\frac{125}{3}\left(-1\right)=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Multiply 125 and 7 to get 875.
\frac{875}{3}x-\frac{125}{3}=\frac{1}{0.018}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Multiply \frac{125}{3} and -1 to get -\frac{125}{3}.
\frac{875}{3}x-\frac{125}{3}=\frac{1000}{18}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Expand \frac{1}{0.018} by multiplying both numerator and the denominator by 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}\left(1-0.2x\right)-\frac{1}{0.012}\left(5x+1\right)
Reduce the fraction \frac{1000}{18} to lowest terms by extracting and canceling out 2.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{500}{9}\left(-0.2\right)x-\frac{1}{0.012}\left(5x+1\right)
Use the distributive property to multiply \frac{500}{9} by 1-0.2x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{500}{9}\left(-\frac{1}{5}\right)x-\frac{1}{0.012}\left(5x+1\right)
Convert decimal number -0.2 to fraction -\frac{2}{10}. Reduce the fraction -\frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{500\left(-1\right)}{9\times 5}x-\frac{1}{0.012}\left(5x+1\right)
Multiply \frac{500}{9} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{-500}{45}x-\frac{1}{0.012}\left(5x+1\right)
Do the multiplications in the fraction \frac{500\left(-1\right)}{9\times 5}.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{1}{0.012}\left(5x+1\right)
Reduce the fraction \frac{-500}{45} to lowest terms by extracting and canceling out 5.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{1000}{12}\left(5x+1\right)
Expand \frac{1}{0.012} by multiplying both numerator and the denominator by 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{250}{3}\left(5x+1\right)
Reduce the fraction \frac{1000}{12} to lowest terms by extracting and canceling out 4.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{250}{3}\times 5x-\frac{250}{3}
Use the distributive property to multiply -\frac{250}{3} by 5x+1.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x+\frac{-250\times 5}{3}x-\frac{250}{3}
Express -\frac{250}{3}\times 5 as a single fraction.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x+\frac{-1250}{3}x-\frac{250}{3}
Multiply -250 and 5 to get -1250.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{1250}{3}x-\frac{250}{3}
Fraction \frac{-1250}{3} can be rewritten as -\frac{1250}{3} by extracting the negative sign.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{250}{3}
Combine -\frac{100}{9}x and -\frac{1250}{3}x to get -\frac{3850}{9}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{750}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{500}{9} and \frac{250}{3} to fractions with denominator 9.
\frac{875}{3}x-\frac{125}{3}=\frac{500-750}{9}-\frac{3850}{9}x
Since \frac{500}{9} and \frac{750}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{875}{3}x-\frac{125}{3}=-\frac{250}{9}-\frac{3850}{9}x
Subtract 750 from 500 to get -250.
\frac{875}{3}x-\frac{125}{3}+\frac{3850}{9}x=-\frac{250}{9}
Add \frac{3850}{9}x to both sides.
\frac{6475}{9}x-\frac{125}{3}=-\frac{250}{9}
Combine \frac{875}{3}x and \frac{3850}{9}x to get \frac{6475}{9}x.
\frac{6475}{9}x=-\frac{250}{9}+\frac{125}{3}
Add \frac{125}{3} to both sides.
\frac{6475}{9}x=-\frac{250}{9}+\frac{375}{9}
Least common multiple of 9 and 3 is 9. Convert -\frac{250}{9} and \frac{125}{3} to fractions with denominator 9.
\frac{6475}{9}x=\frac{-250+375}{9}
Since -\frac{250}{9} and \frac{375}{9} have the same denominator, add them by adding their numerators.
\frac{6475}{9}x=\frac{125}{9}
Add -250 and 375 to get 125.
x=\frac{125}{9}\times \frac{9}{6475}
Multiply both sides by \frac{9}{6475}, the reciprocal of \frac{6475}{9}.
x=\frac{125\times 9}{9\times 6475}
Multiply \frac{125}{9} times \frac{9}{6475} by multiplying numerator times numerator and denominator times denominator.
x=\frac{125}{6475}
Cancel out 9 in both numerator and denominator.
x=\frac{5}{259}
Reduce the fraction \frac{125}{6475} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}