Evaluate
\frac{\sqrt{182}}{40000}\approx 0.000337268
Share
Copied to clipboard
100\sqrt{\frac{2\times 9.1\times 10^{-31}}{1.6\times 10^{-19}}}
Expand \frac{1}{0.01} by multiplying both numerator and the denominator by 100. Anything divided by one gives itself.
100\sqrt{\frac{2\times 9.1}{1.6\times 10^{12}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
100\sqrt{\frac{18.2}{1.6\times 10^{12}}}
Multiply 2 and 9.1 to get 18.2.
100\sqrt{\frac{18.2}{1.6\times 1000000000000}}
Calculate 10 to the power of 12 and get 1000000000000.
100\sqrt{\frac{18.2}{1600000000000}}
Multiply 1.6 and 1000000000000 to get 1600000000000.
100\sqrt{\frac{182}{16000000000000}}
Expand \frac{18.2}{1600000000000} by multiplying both numerator and the denominator by 10.
100\sqrt{\frac{91}{8000000000000}}
Reduce the fraction \frac{182}{16000000000000} to lowest terms by extracting and canceling out 2.
100\times \frac{\sqrt{91}}{\sqrt{8000000000000}}
Rewrite the square root of the division \sqrt{\frac{91}{8000000000000}} as the division of square roots \frac{\sqrt{91}}{\sqrt{8000000000000}}.
100\times \frac{\sqrt{91}}{2000000\sqrt{2}}
Factor 8000000000000=2000000^{2}\times 2. Rewrite the square root of the product \sqrt{2000000^{2}\times 2} as the product of square roots \sqrt{2000000^{2}}\sqrt{2}. Take the square root of 2000000^{2}.
100\times \frac{\sqrt{91}\sqrt{2}}{2000000\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{91}}{2000000\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
100\times \frac{\sqrt{91}\sqrt{2}}{2000000\times 2}
The square of \sqrt{2} is 2.
100\times \frac{\sqrt{182}}{2000000\times 2}
To multiply \sqrt{91} and \sqrt{2}, multiply the numbers under the square root.
100\times \frac{\sqrt{182}}{4000000}
Multiply 2000000 and 2 to get 4000000.
\frac{\sqrt{182}}{40000}
Cancel out 4000000, the greatest common factor in 100 and 4000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}