Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2+\sqrt{2}}{\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)}+\frac{1}{-2+\sqrt{2}}
Rationalize the denominator of \frac{1}{-2-\sqrt{2}} by multiplying numerator and denominator by -2+\sqrt{2}.
\frac{-2+\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{-2+\sqrt{2}}
Consider \left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{4-2}+\frac{1}{-2+\sqrt{2}}
Square -2. Square \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{1}{-2+\sqrt{2}}
Subtract 2 from 4 to get 2.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)}
Rationalize the denominator of \frac{1}{-2+\sqrt{2}} by multiplying numerator and denominator by -2-\sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{4-2}
Square -2. Square \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}
Subtract 2 from 4 to get 2.
\frac{-2+\sqrt{2}-2-\sqrt{2}}{2}
Since \frac{-2+\sqrt{2}}{2} and \frac{-2-\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{-4}{2}
Do the calculations in -2+\sqrt{2}-2-\sqrt{2}.
-2
Divide -4 by 2 to get -2.